研究生: |
謝旻娟 Hsieh, Min-Chuan |
---|---|
論文名稱: |
NuScale iPWR RELAP5-3D 輸入檔建立與暫態分析 NuScale iPWR RELAP5-3D Input Deck Development and Transient Analysis |
指導教授: |
李敏
Lee, Min |
口試委員: |
陳紹文
Chen, Shao-Wen 王德全 Wang, Te-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 小型模組化反應爐 、NuScale 、RELAP5-3D |
外文關鍵詞: | Small Modular Reactor, NuScale Power Module, RELAP5-3D |
相關次數: | 點閱:29 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究目的為建立美國NuScale公司所設計160MWth (50MWe)小型模組化反應爐(Small Modular Reactor,SMR)的RELAP5-3D輸入模式,並對所建立模型進行驗證。建立模型使用的數據主要以美國核能管理委員會(Nuclear Regulatory Commission,NRC)網站上公布之終期安全分析報告(Final Safety Analysis Report,FSAR)第五版為基礎,缺失的數據則透過參考他人文獻或自行計算進行假設。輸入檔模擬的部分包含反應器內的各組件以及反應器外之圍阻體與水池。輸入檔建立完成後,首先模擬反應器在正常運轉下的情況,並將結果中重要的參數與終期安全分析報告內的設計值進行比較。在確認反應器參數大致符合設計值且穩定後,第二部分再模擬反應器發生暫態(Transient)事件時的反應,並將結果與終期安全分析報告中的模擬結果進行比較,藉此驗證模型中兩個重要的被動安全系統(passive safety system): 餘熱移除系統(Decay Heat Removal System,DHRS)和緊急爐心冷卻系統(Emergency Core Cooling System,ECCS)的表現。
經過調整,建立之模型在穩態(Steady-state)模擬下可得到穩定的結果,且重要參數與設計值之相對誤差均小於4%。在暫態分析中,由模擬主蒸氣隔離閥關閉(Main Steam Isolation Valve Closure)事件的結果可發現,模型中將螺旋管式蒸汽產生器(Helical Coil Steam Generator)的設計簡化會使暫態初期的熱傳現象與實際情況不符合,進而會對其他參數之模擬結果造成影響。餘熱移除系統之移熱能力的模擬也還有進步的空間。而從模擬緊急爐心冷卻系統意外運作(Inadvertent Operation of ECCS)事件的結果可發現,模擬結果相較參考值在分析結束時有較低的反應器壓力槽水位。由分析結果可以總結,此研究建立的模型大致可模擬出NuScale小型模組化反應器在遭遇暫態事故時大致的系統反應與參數變化,然而在螺旋管式蒸汽產生器的熱傳模擬上仍有進步的空間。
This study develops a RELAP5-3D input deck of the 160 MWt (50 MWe) Small Modular Reactor (SMR) designed by NuScale Power, and verifies the established model. The data used for input deck development is primarily based on the Final Safety Analysis Report (FSAR) Version 5 published on the U.S. Nuclear Regulatory Commission (NRC) website. Missing data are referred from literatures or self-calculations. The input deck covers the main components of the reactor, the containment vessel, and the reactor pool. It is assumed that the helical tubes can be represented by a straight tube with an inclination angle due to the limitation of RELAP5-3D. Upon completing the input deck, normal operation of the reactor is simulated. After several adjustments, the developed input deck is initialized successfully to yield steady-state condition with relative errors of key parameters within 4% of the design reference values in FSAR.
The second part of the study simulates the transient responses of the system to verify the adequacy of the input deck to simulate the two critical passive safety systems: Decay Heat Removal System (DHRS) and Emergency Core Cooling System (ECCS). Two events are simulated, which are the event of main steam line isolation valve (MSIV) closure and the event of inadvertent operation of ECCS. The results of simulating the MSIV closure event indicate that the assumption of straight pipe of SG tubes in the input deck model leads to discrepancies in heat transfer phenomena during the early stage of the transient. Improvements are also needed in simulating the heat removal capacity of the DHRS. The simulation results of the inadvertent operation of ECCS event show a lower reactor pressure vessel (RPV) water level at the end of the simulation. In conclusion, the input deck developed in this study can generally simulate the steady-state operation and the transient responses of the NuScale SMR. Improvements to the model, particularly on the simulations of helical SG tubes component, are needed in future work.
[1] “Advances in Small Modular Reactor Technology Developments”. IAEA Advanced Reactors Information System (ARIS), 2022.
[2] High temperature gas cooled reactor fuels and materials. 2010, International Atomic Energy Agency.
[3] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter One: Introduction and General Description of the Plant, 2020.
[4] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Four: Reactor, 2020.
[5] NuScale, “NuScale Plant Design Overview”, 2014.
[6] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Fifteen: Transient and Accident Analyses, 2020.
[7] Skolik, K., C. Allison, J. Hohorst, M. Malicki, M. Perez-Ferragut, L. Pieńkowski, and A. Trivedi, “Analysis of loss of coolant accident without ECCS and DHRS in an integral pressurized water reactor using RELAP/SCDAPSIM”. Progress in Nuclear Energy, 2021, 134(103648).
[8] Skolik, K., A. Trivedi, M. Perez-Ferragut, and C. Allison. “LOCA-type scenario simulation for NuScale-SMR with RELAP/SCDAPSIM/MOD3. 4”. 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, Oregon USA, 2019.
[9] Skolik, K., A. Trivedi, M. Perez-Ferragut, and C. Allison. “Integrated uncertainty analysis of the turbine trip transient in NuScale SMR using RELAP/SCDAPSIM”. 12th international conference of the Croatian nuclear society, 2018, Croatian Nuclear Society Zadar, Croatia.
[10] Fakhraei, A., F. Faghihi, A. Rabiee, and M. Safarinia, “Coolant flow rate instability during extended station blackout accident in NuScale SMR: Two approaches for improving flow stability”. Progress in Nuclear Energy, 2021, 131(103602).
[11] Fakhraei, A., F. Faghihi, M. Amin-Mozafari, and A. Sadegh-Noedoost, “Safety analysis of an advanced passively-cooled small modular reactor during station blackout scenarios and normal operation with RELAP5/SCDAP”. Annals of Nuclear Energy, 2020, 143(107470).
[12] Susyadi, A.S. Ekariansyah, H. Tjahjono, and D. Tjahyani. “Analysis on inadvertent operation of decay heat removal system in NuScale reactor”. AIP Conference, 2019, AIP Publishing.
[13] Susyadi, “Simulation of Feed Water Temperature Decrease Accident in NUSCALE Reactor”. Jurnal Teknologi Reaktor Nuklir TRI DASA MEGA, 2018, 20(3), p. 133-142.
[14] Alkan, C., “Evaluation of Safety Transients in Helical Coil Steam Generators with RELAP5-3D Code”, McMaster University, Master Degree 2022.
[15] Johnson, K.P., “Transient Analysis of the NuScale Power Helical-Coil Steam Generator Tube Rupture Using RELAP5-3D”, University of Rhode Island, Master Degree, 2021.
[16] Mesina, G.L., “A history of RELAP computer codes”. Nuclear Science and Engineering, 2016, 182(1), p. v-ix.
[17] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Nine: Auxiliary Systems, 2020.
[18] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Seven: Instrumentation and Controls, 2020.
[19] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Six: Engineered Safety Features, 2020.
[20] NuScale, “NuScale Standard Plant Design Certification Application”. Chapter Five: Reactor Coolant System and Connecting Systems, 2020.
[21] “Evaluation of Advanced Thermohydraulic System Codes for Design and Safety Analysis of Integral Type Reactors”. International Atomic Energy Agency (IAEA), 2014.
[22] Phungky, S., A. Agung, and S. Sihana. “Analysis of natural convection capability in NuScale primary cooling systems with mixture of uranium and plutonium (mixed oxide) fuel using RELAP5-3D”. AIP Conference Proceedings, 2020, AIP Publishing.
[23] Skolik, K., “Thermal-hydraulic Analysis of Severe Accident Progress in Pressurized Light Water Reactor According to Its Scale”, AGH University of Science and Technology, Doctoral Degree, 2021.
[24] Hoffer, N.V., P. Sabharwall, and N.A. Anderson, “Modeling a helical-coil steam generator in RELAP5-3D for the next generation nuclear plant”. 2011, Idaho National Lab.(INL), Idaho Falls, ID (United States).
[25] Li, L., T.W. Kim, Y. Zhang, S.T. Revankar, W. Tian, G. Su, and S. Qiu, “MELCOR severe accident analysis for a natural circulation small modular reactor”. Progress in Nuclear Energy, 2017, 100, p. 197-208.