研究生: |
陳彥瑋 Chen, Yen Wei |
---|---|
論文名稱: |
破傷風桿菌焦磷酸水解酵素中色胺酸之功能與螢光分析 Functional and Fluorescence Analyses of Tryptophan Residues in H+-pyrophosphatase of Clostridium tetani |
指導教授: | 潘榮隆 |
口試委員: |
孫玉珠
高茂傑 簡麗鳳 涂世隆 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 質子焦磷酸水解酶 、破傷風桿菌 、色胺酸螢光分析 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
同型雙次體質子焦磷酸水解酶(H+-PPase; EC 3.6.1.1) 在許多細菌與高等的植物中,藉由水解焦磷酸(PPi)並運送氫質子通過細胞膜,來維持細胞內部pH值的恆定。質子焦磷酸水解酶具有許多基本的功能區,包含PPi結合區、酸性區I及II;這些區域已被證實參與了酵素的催化機制。在本實驗中,破傷風桿菌(Clostridium tetani)質子焦磷酸水解酶中三個原生性的色胺酸(tryptophan),Trp-75, Trp-365, 和 Trp-602被用來當作內生性的螢光標誌,以觀察其細微局部結構(膜外、細胞膜區及細胞質區)的狀態。藉由與受質類似物(Mg-imidodiphosphate, Mg-IDP)的結合,局部結構的改變使色胺酸能免於受到特定化學修飾物(N-bromosuccinimide, NBS)的修飾破壞,尤其在Trp-602結果最明顯。如果和水解產物Mg-Pi結合,Trp-75 和 Trp-365(但不包含Trp-602)能因結構的改變而不會受到NBS的修飾,此結果也間接說明,Mg-Pi結合時,位於細胞質區的酵素催化區是打開的,同時,不同受質和產物的結合,會使質子焦磷酸水解酶有不同的結構狀態。分析Stern-Volmer relationship 和 Steady-state fluorescence anisotropy指出,位於細胞質區的Trp-602是較暴露、易與外界溶液反應。除此之外,定點突變色胺酸及胰蛋白酶剪切分析指出,Trp-602是非常重要的胺基酸;我們推測該色胺基酸與穩定催化區結構有相關。最後,本實驗中所建立的單一色胺酸突變株,能提供一個新的工具,日後可用來研究質子焦磷酸水解酶的功能與結構分析。
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) maintains the cytoplasmic pH homeostasis of many bacteria and higher plants by coupling pyrophosphate (PPi) hydrolysis and proton translocation. H+-PPase accommodates several essential motifs involved in the catalytic mechanism, including the PPi binding motif and Acidic I and II motifs. In this study, 3 intrinsic tryptophan residues, Trp-75, Trp-365, and Trp-602, in H+-PPase from Clostridium tetani were used as internal probes to monitor the local conformational states of the periplasm domain, transmembrane region, and cytoplasmic domain, respectively. Upon binding of the substrate analog Mg-imidodiphosphate (Mg-IDP), local structural changes prevented the modification of tryptophan residues by N-bromosuccinimide (NBS), especially at Trp-602. Following Mg-Pi binding, Trp-75 and Trp-365, but not Trp-602, were slightly protected from structural modifications by NBS. These results reveal the conformation of H+-PPase is distinct in the presence of different ligands. Moreover, analyses of the Stern-Volmer relationship and steady-state fluorescence anisotropy also indicate that the local structure around Trp-602 is more exposed to solvent and varied under different environments. In addition, Trp-602 was identified to be an essential residue in the H+-PPase that may potentially be involved in stabilizing the structure of the catalytic region by site-directed mutagenesis and trypsin proteolysis analyses.
Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling. Bioinformatics 22: 195-201
Baltscheffsky M, Schultz A, Baltscheffsky H (1999) H+-pumping inorganic pyrophosphatase: a tightly membrane-bound family. FEBS Lett 457:527-533
Drozdowicz YM, Rea PA (2001) Vacuolar proton pyrophosphatase: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206-211
Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214
Ginsburg H (2002) Abundant proton pumping in Plasmodium falciparum, but why? Trends Parasitol 18:483-486
Gordon-Weeks R, Steele SH, Leigh RA (1996) The role of magnesium, pyrophosphate, and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase (studies using ligand protection from covalent inhibitors). Plant Physiol 111:195-202
Huang YT, Liu TH, Chen Y W, Lee CH, Chen HH, Huang TW, Hsu SH, Lin SM, Pan YJ, Lee CH, Hsu IC, Tseng FG, Fu CC, Pan RL (2010) Distance variations between active sites of H+-pyrophosphatase determined by single molecule fluorescence resonance energy transfer. J Biol Chem 285:23655-23664
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODE repository and associated resources. Nucleic Acids Res 37:387-392
Kirsch RD, Joly E (1998) An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. Nucleic Acids Res 26:1848-1850
Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd Ed., pp. 529-567, Kluwer Academic/Plenum Publishers, New York
Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH, Chen YW, Lin SM, Huang LK, Pan RL (2011) Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J Biol Chem 286:11970-11976.
Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola RA (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121-125
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399-403
Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL (2009) The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J. 276:4381-4394
Lundblad RL (1995) in Techniques in Protein Modification, Vol. 1, pp. 187-208, CRC Press, New York
Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465: 37-51
Maeshima M (2001) Tonoplast transporters: Organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469-497
Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279:35106-35112
Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276:7654-7660
Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A 102:18830-18835
Peitsch MC (1995) Protein modeling by E-mail Bio/Technology 13:658-660
Rea PA, Britten CJ, Jennings IR, Calvert CM, Skiera LA, Leugh RA, Sanders D (1992) Regulation of vacuolar H+-pyrophosphatase by free calcium: A reaction kinetic analysis. Plant Physiol 100:1706-1715
Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17:348-353
Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157-180
Sato MH, Kasahara M, Ishii N, Homareda H, Matsui H, Yoshida M (1994) Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem 269:6725-6728
Schumacher K (2006) Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9:595-600
Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SS, Ma J, Pan RL (1996) Subunit interaction of vacuolar H+-pyrophosphatase as determined by radiation inactivation. Biochem J 316:143-147
Zhang J, Li J, Wang X, Chen J (2011) OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Biochem 49:33-3