簡易檢索 / 詳目顯示

研究生: 周祐仲
Chou,You-chung
論文名稱: 利用光學同調斷層掃描儀測量液體中不同濃度以及溫度造成折射率的變化
The investigation of liquid's refractive index under different concentration and temperature by optical coherence tomography
指導教授: 吳見明
Wu,Chien-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 46
中文關鍵詞: 光學同調斷層掃描
外文關鍵詞: optical coherence tomography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描儀(optical coherence tomography, OCT)是一種新發展的技術,且能夠產生高解析度的影像。系統的縱向解析度常常是決定於參考端與樣本端兩臂干涉波包訊號的半高全寬值(full width half maximum, FWHM),但波包內有干涉強度的條紋變化,如果利用這些條紋的變化來做量測,那將會得到更好的縱向解析度。為了同時得到能夠測量較長範圍的光程變化測量以及高解析度的優點,我們利用低同調干涉波包的移動來測量折射率隨濃度的變化,以及用波包內的干涉條紋變化來測量折射率隨溫度的改變。實驗結果得到折射率與濃度呈現一個線性正比的關係,而折射率與溫度則呈現一個線性反比的關係。除了以上的測量外,我們還讓此儀器做更進一步的應用,來測量不同地區湖水中的折射率,藉著所測量到的折射率高低來評斷水質中的污染程度,提供一個新穎的檢測方式。


    章節目錄 中文摘要.…………………………………………………………………I 英文摘要……………………………………………………………...II 致謝…………………………………………………………………..III 章節目錄………………………………………………………………..IV 圖目錄…………………………………………………………………..VI 表目錄……………………………………………………………..……IX 第一章 緒論……………………………………………………………..1 1.1 研究動機…………………………………………………….....1 1.2 文獻回顧……………………………………………………….3 1.3 研究目的……………………………………………………….9 第二章 光學同調斷層掃描技術之理論………………………………10 2.1 低同調干涉原理……………………………………………...10 2.2 系統之參數…………………………………………………...15 2.2.1 縱向解析度……………………………………………..15 2.2.2 橫向解析度……………………………………………..16 第三章 實驗設備與方法………………………………………………17 3.1 系統架構與元件……………………………………………...17 3.1.1 光源及控制器………………………………………….18 3.1.2 分光鏡及反射鏡……………………………………….19 3.1.3 步進馬達及控制器…………………………………….20 3.1.4 溫度量測器…………………………………………….21 3.1.5 石英比色管與固定架………………………………….22 3.2 實驗方法與設計……………………………………………...23 3.2.1 水與葡萄糖溶液的折射率量測……………………….23 3.2.2 水與葡萄糖溶液在不同溫度之折射率量測………….23 3.2.3 不同濃度鹽酸溶液的折射率量測…………………….25 3.2.4 不同湖水的汙染程度量測…………………………….25 3.2.5 數據分析方法………………………………………….26 第四章 結果與討論……………………………………………………27 4.1 干涉訊號……………………………………………………...27 4.2 水與葡萄糖溶液的折射率量測……………………………...29 4.3 水與葡萄糖溶液在不同溫度的折射率量測………………...32 4.4 不同鹽酸濃度的折射率量測………………………………...37 4.5 不同地區湖水折射率量測…………………………………...39 第五章 結論與建議……………………………………………………41 參考文獻………………………………………………………………..43 圖目錄 圖1.1 Fujimoto的儀器架構圖………………………………………...3 圖1.2 吸收光譜圖……………………………………………………...4 圖1.3 鎖模鈦藍寶石雷射光譜圖……………………………………...5 圖1.4 氬離子雷射激發鈦藍寶石晶體光譜圖………………………...5 圖1.5 掃描示意圖……………………………………………………...6 圖1.6 光學同調顯微鏡………………………………………………...7 圖2.1 麥克森干涉儀………………………………………………….11 圖2.2 低同調干涉訊號……………………………………………….13 圖2.3 高同調干涉訊號……………………………………………….14 圖2.4 雷利標準圖…………………………………………………….15 圖2.5 透鏡聚焦點大小示意圖……………………………………….16 圖3.1 系統架構圖…………………………………………………….18 圖3.2 SLD光譜圖……………………………………………………19 圖3.3 光纖藕合器…………………………………………………….19 圖3.4 分光鏡對不同波長光的穿透率圖…………………………….20 圖3.5 反射鏡對不同波長光的反射率圖…………………………….20 圖3.6 速率時間圖…………………………………………………….21 圖3.7 電阻與溫度關係圖…………………………………………….21 圖3.8 光穿過石英管路徑示意圖…………………………………….23 圖3.9 干涉條紋強度變化示意圖…………………………………….25 圖4.1 重複三次的干涉訊號圖……………………………………….27 圖4.2 希伯特轉換後的訊號圖……………………………………….28 圖4.3 經曲線擬合的西伯特轉換圖………………………………….28 圖4.4 未加入水的干涉訊號位置…………………………………….29 圖4.5 加入水的干涉訊號位置……………………………………….29 圖4.6 水和不同濃度葡萄糖溶液的干涉訊號圖…………………….30 圖4.7 不同濃度葡萄糖溶液的折射率……………………………….30 圖4.8 抓取10000秒訊號……………………………………………..32 圖4.9 1000秒穩定訊號………………………………………………33 圖4.10 溫度隨時間變化圖…………………………………………….33 圖4.11 干涉強度隨時間變化圖……………………………………….34 圖4.12 干涉訊號隨溫度變化圖……………………………………….34 圖4.13 水折射率隨溫度變化圖……………………………………….35 圖4.14 葡萄糖溶液折射率隨溫度變化圖…………………………….35 圖4.15 不同鹽酸濃度的干涉訊號圖………………………………….37 圖4.16 不同鹽酸濃度的折射率……………………………………….38 圖4.17 不同湖水的干涉訊號圖……………………………………….39 圖4.18 不同湖水的折射率…………………………………………….39 表目錄 表4.1 不同濃度葡萄糖溶液的折射率與溫度值…………………….31 表4.2 不同濃度鹽酸溶液的折射率與溫度值……………………….38 表4.3 不同湖水的折射率與溫度值………………………………….40

    參考文獻
    [1] S. H. Yun, G. J. Tearney, and B. E. Bouma, "Biomedical imaging using optical technologies," in Second European Workshop on Optical Fibre Sensors, 2004, pp. 17-24.
    [2] E. J. Adams, D. S. Brettle, A. P. Jones, A. R. Hounsell, and D. J. Mott, "Estimation of fetal and effective dose for CT examinations," The British Journal of Radiology, vol. 70, pp. 272-278, 1997.
    [3] M. S. Judenhofer, H. F. Wehrl, D. F. Newport, C. Catana, S. B. Siegel, M. Becker, A. Thielscher, M. Kneilling, M. P. Lichy, M. Eichner, K. Klingel, G. Reischl, S. Widmaier, M. Rocken, R. E. Nutt, H. J. Machulla, K. Uludag, S. R. Cherry, C. D. Claussen, and B. J. Pichler, "Simultaneous PET-MRI: a new approach for functional and morphological imaging," Nat Med, vol. 14, pp. 459-65, Apr 2008.
    [4] J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, "Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy," Neoplasia, vol. 2, pp. 9-25, 2000.
    [5] K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, L. Gargasson, Jean-Francois, and C. Boccara, "In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography," Opt. Express, vol. 13, pp. 6286-6295, 2005.
    [6] M. Laubscher, M. Ducros, B. Karamata, T. Lasser, and R. Salathe, "Video-rate three-dimensional optical coherence tomography," Opt. Express, vol. 10, pp. 429-435, 2002.
    [7] M. H. McCay, V. V. Semak, J. A. Hopkins, and B. Blaha, "Refractive index of NH4Cl–H2O as a function of wavelength: the effect of temperature and concentration," Appl. Opt., vol. 35, pp. 3715-8, 1996.
    [8] L. Cheng, "A study on the tesing methods of hot spring water in Hell hot spring valley, Peitou," Chung Yuan Christian University Master thesis, 2004.
    [9] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science, vol. 254, pp. 1178-1181, 1991.
    [10] W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE, vol. 26, pp. 2166-2185, 1990.
    [11] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography principles and applications," Rep. Prog. Phys., vol. 66, pp. 239-303, 2003.
    [12] P. H. Tomlins and R. K. Wang, "Theory, developments and applications of optical coherence tomography," J. Phys. D: Appl. Phys., vol. 38, pp. 2519-2535, 2005.
    [13] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett., vol. 24, pp. 1221-1223, 1999.
    [14] A. M. Kowalevicz, T. Ko, I. Hartl, and J. G. Fujimoto, "Ultrahigh resolution optical coherence tomography using a superluminescent light source," Opt. Express, vol. 10, pp. 349-353, 2003.
    [15] C. Hitzenberger, P. Trost, P.-W. Lo, and Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express, vol. 11, pp. 2753-61, 2003.
    [16] A. L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A. K. El-Naggar, and R. Richards-Kortum, "Detection and diagnosis of oral neoplasia with an optical coherence microscope," Journal of Biomedical Optics, vol. 9, pp. 1271-1280, 2004.
    [17] H. Maruyama, S. Inoue, T. Mitsuyama, M. Ohmi, and M. Haruna, "Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness," Appl. Opt., vol. 41, pp. 1315-1322, 2002.
    [18] A. I. Kholodnykh, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, "Accurate Measurement of Total Attenuation Coefficient of Thin Tissue With Optical Coherence Tomography," IEEE, vol. 9, pp. 210-221, 2003.
    [19] V. K. Chhaniwal, A. Anand, and C. S. Narayanamurthy, "Measurement of diffusion coefficient of transparent liquid solutions using Michelson interferometer," Optics and Lasers in Engineering, vol. 42, pp. 9-20, 2004.
    [20] U. K. Krieger, J. C. Mossinger, B. Luo, U. Weers, and T. Peter, "Measurement of the refractive indices of H2SO4-HNO3-H2O solutions to stratospheric temperatures," Appl. Opt., vol. 39, pp. 3691-3703, 2000.
    [21] A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol., vol. 51, pp. 2165-2177, 2006.
    [22] F. J. van der Meer, D. J. Faber, I. Cilesiz, M. J. C. van Gemert, and T. G. van Leeuwen, "Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography," Journal of Biomedical Optics, vol. 11, pp. 041120-6, 2006.
    [23] S. F. Chen, "Construction and Systematic Study of an Optical Coherence Microscopy," Master thesis, 2006.
    [24] C. S. Yang, "Simultaneous measurement of refractive index and thickness of transparent materials by optical coherence tomography," Master thesis, 2006.
    [25] E. Hecht, "Optics," pp. 386-389, 2002.
    [26] J. M. Schmitt, "Optical Coherence Tomography (OCT): A Review," IEEE, vol. 5, pp. 1205-1215, 1999.
    [27] B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," pp. 350-351, 1991.
    [28] 楊自森,吳見明,蔡旻龍,莊淳宇,崔豫笳,許志楧, "分子生醫光電科學與技術," 物理雙月刊, 2005.
    [29] B. Richerzhagen, "Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm," Appl. Opt., vol. 35, pp. 1650-3, 1996.
    [30] Y. Watanabe and I. Yamaguchi, "Digital Hilbert transformation for separation measurement of thicknesses and refractive indices of layered objects by use of a wavelength-scanning heterodyne interference confocal microscope," Appl. Opt., vol. 41, pp. 4497-4502, 2002.
    [31] W. M. b. M. Yunus and A. b. A. Rahman, "Refractive index of solutions at high concentrations," Appl. Opt., vol. 27, pp. 3341-3343, 1988.
    [32] K. V. Larin, T. Akkin, R. O. Esenaliev, M. Motamedi, and T. E. Milner, "Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations," Appl. Opt., vol. 43, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE