簡易檢索 / 詳目顯示

研究生: 李征原
論文名稱: 利用斑馬魚腦創傷模式探討神經血管重組
Zebrafish Model of Traumatic Brain Injury for Neurovascular Remodeling Research
指導教授: 莊永仁
口試委員: 林澤
劉意雯
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 48
中文關鍵詞: 神經血管重組斑馬魚腦創傷
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由中風或創傷所造成的腦損傷一直在世界各地都是主要的健康問題。除了高發生率與死亡率,腦損傷也導致大多數的患者長期知能與行動障礙。至今,腦損傷的治療方法都專注於神經保護,然而越來越多的證據顯示,在受損區域若能同時促進血管新生與神經再生,對病患的治療可有顯著的改善。透過這樣的臨床觀察,我們想知道是否增益神經血管修護環境,能有助於腦損傷的修復。
    為了瞭解神經血管修護環境在腦損傷後的修復機制,我們發展了一個腦損傷斑馬魚模式以探討小腦損傷後的神經血管再生。在細胞層次上,我們利用螢光標記觀察血管在小腦損傷後不同時間點的再生狀況。此外在分子層次上,我們利用微陣列分析在小腦損傷後,不同時間點基因表現的模式趨勢,以找出可能在神經血管修護環境激活的訊號傳遞路徑。最後,我們還嘗試利用一套多物體影像追踪與行為分析工具,計算斑馬魚的游泳距離、反向轉彎的次數及轉動的次數,來觀察斑馬魚小腦於泳動功能的修復。綜而言之,本研究成功利用轉殖基因斑馬魚,針對因意外事故造成的創傷性腦損傷,開發了一個低成本的腦損傷動物模式,藉以供研究者剖析在組織修復過程中,血管新生與神經再生對修復過程的影響。


    中文摘要. I Abstract.. II 致谢. . . . . III Abbreviations VII 1. Introduction 1 1.1 Traumatic brain injury and current treatment 1 1.2 Wound healing 2 1.3 Angiogenesis and Neurogenesis 3 1.4 Neurovascular niche 4 1.5 The advantages of zebrafish model in regeneration research 4 1.4 The objective of this study 5 2. Materials and Methods 6 2.1 Zebrafish line 6 2.2 Stab lesion assay 6 2.3 Bright field image capture 6 2.4 Immunohistochemistry staining 6 2.5 Vibratome 7 2.6 Confocal microscopy 7 2.7 Microarray 8 2.8 Behavior video tracking 8 3. Results. 9 3.1 Controlled injury created by needle stabbing in zebrafish cerebellum 9 3.1.1 Selection of fish 9 3.1.2 Selection of injury site 9 3.1.3 Design of needle device 9 3.2 Overall assessment of TBI zebrafish and the wound healing process 10 3.2.1 TBI assessment by appearance 10 3.2.2 Direct observation of the TBI brain 10 3.2.3 TBI effect on swimming pattern 11 3.3 Significant genes involved in angiogenic and neurogenic pathways were identified by time-series microarray analysis 11 3.3.1 Microarray data processing 11 3.3.2 Time-series gene expression profiling 11 3.3.3 Gene-enrichment pathway analysis 12 3.3.4 Comparison with previous TBI studies in the mouse and rat models 12 3.3.5 Core signaling pathways involved in zebrafish brain injury and recovery 13 3.4 Time lapse analysis on brain vasculatures remodeling and cell proliferation in the injury site 14 3.4.1 Visualization of zebrafish adult brain vasculatures 14 3.4.2 Angiogenesis and brain vasculature remodeling 14 3.4.3 PCNA signals was unevenly detected at the edge of neural stem cell niche near the injury site 15 3.4.4 Correlation between angiogenesis and PCNA positive cells 16 3.5 Behavior analysis of zebrafish after TBI 16 3.5.1 Behavior parameters affected by TBI 16 3.5.2 Determination on the zebrafish number in each behavior experiment 17 3.5.3 Preliminary data for behavior analysis under different environmental conditions 17 4. Discussion 20 4.1 Regrowth of blood vessels and accumulation of proliferating cells 20 4.2 Signalling pathway in neurovascular niche 22 4.3 The challenges in stabling zebrafish behaviour analysis model 23 List of Table 31 Table 1. RNA QA / QC information. 31 List of Figures 32 Fig 1. Schematic of stab lesion and the observation of cerebellum after stab lesion. 32 Fig 2. Regeneration of cerebellum after different time points post injury. 33 Fig 3. Heatmap of 1.5 fold upregulate and downregulate gene selection from microarray data. 34 Fig 4. Analysis of microarray data by STEM and PANTHER. 36 Fig 5. Recovery of blood vessel after Stab lesion. 37 Fig 6. Accumulation of proliferating cells after Stab lesion. 38 Fig 7. Interaction between blood vessel and proliferating cells during regeneration. 39 Supporting Information 40 Fig S1. Analysis of behavior parameters. 40 Fig S2. Analysis of behavior parameters with temperature-control. 41 Fig S3. Behavior set up for behavior analysis. 42 Fig S4. Design of syringe. 43 Fig S5. Track of Zebrafish behavior after TBI. 44 Fig S6. Lateral view of cerebellum blood vessels and PCNA positive proliferating cells during regeneration. 45 Fig S7. Comparison of vascular anatomy between embryonic and adult zebrafish. 46 Fig S8. 3D image of blood vessels and proliferating cells during regeneration. 47 Fig S9. Gene expression profiles of Klf4, Sox2 and Oct4 from microarray data. 48

    1. Faul, M. et al. Traumatic Brain Injury in the United States:Emergency Department Visits, Hospitalizations and Deaths, 2002–2006, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2010).
    2. Saatman, K. E., A. C. Duhaime, et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25(7): 719-738 (2008).
    3. Mark W. Greve, Brian J. Zink. Pathophysiology of traumatic brain injury. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine 76: 2, 97-104 (2009).
    4. K.K. Jain. Neuroprotection in traumatic brain injury. Drug Discovery Today 13: 23-24, 1082-1089 (2008).
    5. Tolias, C.M.; Bullock, M.R. Critical appraisal of neuroprotection trials in head injury: what have we learned? NeuroRx 1: 71-79 (2004).
    6. Ginsberg, M.D. Current status of neuroprotection for cerebral ischemia. Synoptic overview. Stroke 40: 111–114 (2008).
    7. Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12): 596–604 (2010).
    8. Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11(3): 298–308 (2010).
    9. Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5): 491–500 (2009)
    10. Greenberg D.A. and Jin K. From angiogenesis to neuropathology. Nature 438: 954–959 (2005).
    11. Guo X, Liu L, Zhang M, Bergeron A, Cui Z, Dong JF, Zhang J. Correlation of CD34+ cells with tissue angiogenesis after traumatic brain injury in a rat model. J Neurotrauma 26(8): 1337-1344 (2009).
    12. Besler C, Doerries C, Giannotti G, Lüscher TF, Landmesser U. Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther 6(8): 1071–1082 (2008).
    13. Sköld, M.K., Von Gertten, C., Sandberg-Nordqvist, A.C., Mathiesen, T. & Holmin, S. VEGF and VEGF receptor expression after experimental brain contusion in rat. J. Neurotrauma, 22, 353–367 (2005).
    14. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 132(4): 645-660 (2008).
    15. Sun D, Mcginn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204(1): 264-272 (2007).
    16. Kernie SG, Erwin TM, Parada LF. Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice. J Neurosci Res 66(3): 317-326 (2001)
    17. R. Morgan, C.W. Kreipke, G. Roberts, M. Bagchi, J.A. Rafols. Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 29: 375–381 (2007).
    18. Madri J.A., Modeling the Neurovascular niche: Implications for recovery from CNS injury. J. Physiol & Pharmacol 60: 95-104 (2009).
    19. C. Lee, D.V. Agoston. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J. Neurotrauma 27: 541–553 (2010).
    20. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7: 41–53 (2006).
    21. Vaucher E, Tong XK, Cholet N, Lantin S, and Hamel E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J Comp Neurol 421: 161-171 (2000).
    22. Haydon PG, Carmignoto G. Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86: 1009–1031(2006)
    23. Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 117(5): 481–496 (2009).
    24. Chopp M, Li Y. Treatment of stroke and intracerebral hemorrhage with cellular and pharmacological restorative therapies. Acta Neurochir 105:79–83 (2008).
    25. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett 456(3): 120–123 (2009).
    26. Johnson, S.L. & Weston, J.A. Temperature-sensitive mutations that cause stage-specific defects in Zebrafish fin regeneration. Genetics 141: 1583-95 (1995).
    27. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 298: 2188–2190 (2002).
    28. Guo, Y., Ma, L., Cristofanilli, M., Hart, R.P., Hao, A. & Schachner, M. Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience, 172: 329–341 (2010).
    29. März M, Schmidt R, Rastegar S, Strähle U. Regenerative response following stab injury in the adult zebrafish telencephalon. Developmental Dynamics 240( 9): 2221-2231 (2011).
    30. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138: 4831–4841 (2011).
    31. Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke 40(1): 254–260(2009).
    32. Lu KT, Sun CL, Wo PY, Yen HH, Tang TH, et al. Hippocampal Neurogenesis after Traumatic Brain Injury Is Mediated by Vascular Endothelial Growth Factor Receptor-2 and the Raf/MEK/ERK Cascade. J Neurotrauma 28: 1–10 (2011).
    33. S. Yoshimura, T. Teramoto, M.J. Whalen, M.C. Irizarry, Y. Takagi, J. Qiu, J. Harada, C. Waeber, X.O. Breakefield, M.A. Moskowitz. FGF-2 regulates neurogenesis and degeneration in the dentate gyrus after traumatic brain injury in mice. J. Clin. Invest 112: 1202–1210 (2003)
    34. D. Sun, M.R. Bullock, N. Altememi, Z. Zhou, S. Hagood, A. Rolfe et al. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 27: 923–938 (2010).
    35. White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT, Horner PJ. Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 28: 297–307 (2010).
    36. C.I. Dubreuil, N. Marklund, K. Deschamps, T.K. McIntosh, L. McKerracher. Activation of rho after traumatic brain injury and seizure in rats. Exp. Neurol 198: 361–369 (2006).
    37. Hibi M,Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 72: 282–301 (2011).
    38. Kaslin J,Ganz J,Geffarth M,Grandel H,Hans S,Brand M. Stem cells in the adult zebrafish cerebellum: Initiation and maintenance of a novel stem cell niche. J Neurosci 29: 6142–6153 (2009).
    39. Bae, Y.-K., Kani, S., Shimizu, T., Tanabe, K., Nojima, H., Kimura, Y., Higashijima, S.-I., and Hibi, M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev. Biol. 330, 406-426 (2009)
    40. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci 26: 13007–13016 (2006).
    41. S. Isogai, M. Horiguchi, B.M. Weinstein. The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development. Dev. Biol. 230: 278–301 (2001).
    42. Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, et al. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells 27: 2969–2978 (2009).
    43. J. Jiang, Y.S. Chan, Y.H. Loh, J. Cai, G.Q. Tong, C.A. Lim, P. Robson, S. Zhong, H.H. Ng. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 10: 353–360 (2008).
    44. D. Huangfu, K. Osafune, R. Maehr, W. Guo, A. Eijkelenboom, S. Chen, W. Muhlestein, D.A. Melton. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol. 26: 1269–1275 (2008).
    45. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, et al. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205: 38–44 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE