研究生: |
劉志欣 Liu, Chih-Hsin |
---|---|
論文名稱: |
結合背腔設計與覆晶技術於觸覺感測晶片之實現 Implement of Tactile Sensors Using Backside Cavity Design and Flip Chip Technology |
指導教授: |
方維倫
Fang, Wei-Leun |
口試委員: |
羅丞曜
Lo, Cheng-Yao 劉育嘉 Liu, yu-Chia |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 觸覺感測晶片 、覆晶技術 、背腔設計 、剪力感測靈敏度 |
外文關鍵詞: | Tactile sensor, Flip chip bonding, Backside cavity design, Shear force sensing sensitivity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前市面上的觸覺感測晶片採用打線接合(Wire Bonding)的方式以進行封裝,然而觸覺感測晶片的使用情境會與外界物體接觸,造成金屬線可能被壓壞的風險。因此,本研究提出利用覆晶技術(Flip Chip Bonding)於觸覺感測晶片之實現,且其製程相對其他解決方式簡單。此外,本研究利用深反應式離子蝕刻製程可彈性地定義背腔幾何形狀以調變參數,並填充高分子於背腔中,使高分子被集中在特定區域內作為力量傳遞的媒介,藉由高分子的流變性以探討不同背腔形狀對元件性能的影響。
Currently, tactile sensors on the market are often packaged by wire bonding, however, the using situation of tactile sensors may usually contact with objects, resulting in the risk of the metal wires being damaged. Therefore, this study proposed the usage of “Flip Chip Bonding” technique in the realization of tactile sensors which has simpler and better fabrication process than other methods. In addition, we utilized the Deep Reaction Ion Etching (DRIE) process to modulate the parameters by flexibly defining the geometry of the backside cavity, followed by filling the backside cavity with polymer in order to concentrate the polymer in a specific area acting as a medium for force transmission. With the rheology of the polymer, we can investigate the performance of tactile sensors by varying the geometry of backside cavity.
[1]http: www.apple.com tw/
[2]http: www.sensorprod.com index.php
[3]http: hospital.kingnet.com.tw
[4]http: www.twhealth.org.tw
[5]http: www.mmh.org.tw davinci
[6]http: www.shadowrobot.com/
[7]http: www.plattform-i40.de I40 Navigation EN Home home.html
[8]https: www.microsoft.com en-us cloud-platform internet-of-things
[9]H.-K. Lee, S.-I. Chang, and E. Yoon, "A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment," Journal of Microelectromechanical Systems, vol. 15, pp. 1681-1686, 2006.
[10]H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, pp. 934-942, 2008.
[11]R. Surapaneni, Q. Guo, Y. Xie, D. Young, and C. H. Mastrangelo, "A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes," Journal of Micromechanics and Microengineering, vol. 23, p. 075004, 2013.
[12]M.-S. Kim, H.-R. Ahn, S. Lee, C. Kim, and Y.-J. Kim, "A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique," Sensors and Actuators A: Physical, vol. 212, pp. 151-158, 2014.
[13]D. J. Beebe, A. S. Hsieh, D. D. Denton, and R. G. Radwin, "A silicon force sensor for robotics and medicine," Sensors and Actuators A: Physical, vol. 50, pp. 55-65, 1995.
[14]L. Beccai, S. Roccella, A. Arena, F. Valvo, P. Valdastri, A. Menciassi, M. C. Carrozza, and P. Dario, "Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications," Sensors and Actuators A: Physical, vol. 120, pp. 370-382, 2005.
[15]K. Kim, K.-R. Lee, Y.-K. Kim, D.-S. Lee, N.-K. Cho, W.-H. Kim, K.-B. Park, H.-D. Park, Y.-K. Park, J.-H. Kim, and J.-J. Park, "3-axes flexible tactile sensor fabricated by Si micromachining and packaging technology," IEEE MEMS 2006, Istanbul, Turkey, Jan., 2006, pp. 678-681.
[16]N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[17]Y. Hasegawa, M. Shikida, H. Sasaki, K. Itoigawa, & K. Sato, “An active tactile sensor for detecting mechanical characteristics of contacted objects,” Journal of micromechanics and microengineering, 16(8), pp. 1625, 2006.
[18]S. Wattanasarn, K. Noda, K. Matsumoto, & I. Shimoyama, “3D flexible tactile sensor using electromagnetic induction coils,” IEEE Micro Electro Mechanical Systems, pp. 488-491 , 2012, January.
[19]M. Sohgawa, T. Mima, H. Onishi, T. Kanashima, M. Okuyama, K. Yamashita, M. Noda, M. Higuchi, and H. Noma, "Tactile array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer," TRANSDUCERS’09, Denver, CO, Jun., 2009, pp. 284-287.
[20]K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, "A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material," Sensors and Actuators A: physical, vol. 127, pp. 295-301, 2006.
[21]H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
[22]C.-C. Wen and W. Fang, "Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane," Sensors and Actuators A: Physical, vol. 145, pp. 14-22, 2008.
[23]Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "A tunable range/sensitivity CMOS-MEMS capacitive tactile sensor with polymer fill-in technique," TRANSDUCERS’09, Denver, CO, Jun., 2009, pp. 2190-2193.
[24]K.-W. Liao, Max T. Hou, Hiroyuki Fujita, J. Andrew Yeh, "Liquid-based tactile sensing array with adjustable sensing range and sensitivity by using dielectric liquid, " Sensors and Actuators A: Physical, vol. 231, pp. 15-20, 2015.
[25]W.-C. Lai and W. Fang, "Novel two-stage CMOS-MEMS capacitive-type tactile-sensor with ER-fluid fill-in for sensitivity and sensing range enhancement," TRANSDUCERS’15, Anchorage, AK, Jun., 2015, pp. 1175-1178.
[26]“應變規(Strain Gauge)誕生五十年之演變,” 三聯科技線上資料, 2006.
[27]J. S. Dietrich, "Simmons and the Strain Gauge," Engineering and Science, vol. 50, pp. 19-23, 1986.
[28]C. S. Smith, "Piezoresistance effect in germanium and silicon," Physical review, vol. 94, p. 42, 1954.
[29]Y. Kanda, "Piezoresistance effect of silicon," Sensors and Actuators A: Physical, vol. 28, pp. 83-91, 1991.
[30]Y. Kanda, "A graphical representation of the piezoresistance coefficients in silicon," IEEE Transactions on electron devices, vol. 29, pp. 64-70, 1982.
[31]https://matenggroup.wordpress.com/ion-implantation/
[32]P. V. Zant, Microchip fabrication., 3th Ed., New York, NY: McGraw-Hill, 1996.
[33]http://www.cleanroom.byu.edu/ImplantConCal.phtml, 2016
[34]C. Jacoboni, C. Canali, G. Ottaviani, and A. A. Quaranta, "A review of some charge transport properties of silicon," Solid-State Electronics, vol. 20, pp. 77-89, 1977.
[35]H. Hertz, "On the contact of elastic solids," J. reine angew. Math, vol. 92, pp. 156-171, 1881.
[36]K. L. Johnson, Contact mechanics., Cambridge, UK: Cambridge university press, 1987.
[37]S. Timoshenko, and J. Goodier, Theory of Elasticity., New York, NY: McGraw-Hill, 1951.
[38]S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory of plates and shells., New York, NY: McGraw-Hill, 1959.
[39]R. K. Willardson and A. C. Beer, Semiconductors and semimetals., Cambridge, MA: Academic press, 1977.
[40]http://www.cleanroom.byu.edu/DopConCalc.phtml, 2016.
[41]林炯文, "應用垂直式導線與陽極接合於 SOI-MEMS 晶片之晶圓級封裝," 清華大學奈米工程與微系統研究所碩士論文, 2005.
[42]胡志帆, "新型撓性壓力及觸覺感測陣列之研究," 清華大學動力機械工程學系碩士論文, 2007.