簡易檢索 / 詳目顯示

研究生: 莊清閔
Chung, Ching-Min
論文名稱: 新型單級高升壓比直交流轉換器之建模與製作
Modeling and Implementation of a Novel Single-Stage High Step-Up Ratio DC/AC Converter
指導教授: 潘晴財
Pan, Ching-Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 92
中文關鍵詞: 分散式潔淨能源高升壓比單級直交流轉換器低開關跨壓
外文關鍵詞: Clean Distributed Energy Sources, High Step-Up, Single-Stage Inverter, Low Switch Voltage Stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 潔淨式能源如太陽能電池模組及燃料電池皆為低電壓直流電源,在應用上,往往需要經過一高升壓比直流轉換器,再藉由降壓型反流器以滿足負載或市電併聯的需求,故本文提出一新型單級高升壓比直交流轉換器,以作為此二類能源之介面,俾使系統轉換效率得以提升。
    基本上,本論文之主要貢獻茲分述如下:首先,以電容並聯充電、串聯放電之概念,提出一新型單級高升壓比直交流轉換器,所提之新型轉換器具多相電流分擔能力,進而減少開關電流應力,且可有效地降低直流側開關跨壓,故可選用低電壓應力及低導通電阻之開關元件,達到導通損失的降低,進一步提高電路轉換效率。此外,此新型轉換器具高電壓轉換之增益,使其更適用於大電流之低壓潔淨式能源。第二點貢獻則是針對本論文所提之新型轉換器推導其完整數學模型,其中包含直流模型以及交流小訊號模型,此點可做為將來控制器設計之指標,並輔以電路模擬軟體驗證其正確性。第三點貢獻則依據理論分析實際製作一 直流輸入、 有效值交流輸出,以及額定功率 之雛型系統,以驗證新型轉換器的可行性。由實測結果顯示,其轉換效率於 至 的負載情況下均在 以上,最高點可達 ,且低壓側主動開關跨壓較傳統邱克型單級直交流轉換器減少 。由電路模擬與實測結果可驗證本論文所提轉換器之可行性與優越性。


    For clean distributed energy resources such as photovoltaic (PV) and fuel cells, their output voltages are rather low. Thus, a step-up DC/DC converter is normally required for boosting to a higher voltage level for the following cascaded inverter. Hence, for further improving the overall conversion efficiency, a novel single-stage high step-up inverter as an interface for these new energy systems is proposed in this thesis.
    Basically, the contributions of this thesis can be summarized as follows. First, a novel single-stage inverter topology is proposed for PV or fuel cell systems. The special features include automatic parallel charging and series discharging of two capacitors to provide a rather high step-up ratio, and decrease the electrical stress of the active switches as well with galvanic isolation between input and output. Second, both dc and ac mathematical models are derived for simplifying the design of close loop control. Finally, a 200W, 20V DC input and 110Vrms AC output prototype is implemented. It is seen that the voltage drop across the active switches on low voltage side is 41.7% lower than that of the conventional Ćuk type single-stage inverter, which enables one to use lower RDS(on) MOSFETs. It turns out that the overall efficiency is higher than 90% from 50W to 200W loading. In fact, the highest efficiency, 93%, can be achieved when the load is 150W. Furthermore, both simulation and experimental results indeed verify the effectiveness of the proposed converter.

    目 錄 中文摘要……………………………………………………....……………………….....I 英文摘要…………………………………….……………….………………….…………..II 致 謝.............................................................................................................................III 目 錄 IV 圖 目 錄 VI 表 目 錄 IX 第一章 緒 論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文貢獻 3 1.4 論文內容概述 3 第二章 邱克型單級直交流轉換器簡介 4 2.1 前言 4 2.2 邱克直流轉換器與單相全橋反流器簡介 4 2.3 邱克型單級直交流轉換器之工作原理 12 第三章 新型單級高升壓比直交流轉換器之分析與數學模型建立 23 3.1 前言 23 3.2 新型轉換器架構與工作原理 23 3.3 新型轉換器特性分析 33 3.4 新型轉換器數學模型推導 37 第四章 硬體製作與實驗結果 60 4.1 前言 60 4.2 功率電路製作 61 4.3 控制電路製作 69 4.4 模擬與實測結果 73 第五章 結 論 86 參考文獻 89

    [1] T. Gilchrist, “Fuel cells to the fore [electric vehicles],” IEEE Spectrum, vol. 35, no. 11, pp.35-40, Nov. 1998.
    [2] S. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.
    [3] G. Connor and H. Whittington, “A vision of true costing [reneable energy],” Engineering Science and Education Journal, vol. 10, no. 1, pp. 4-12, Feb. 2001.
    [4] M. Begovic, A. Pregelj, and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1734-1743, Dec. 2001.
    [5] M. Ellis, M. Von Spakovsky, and D. Nelson, “Fuel cell systems: efficient, flexible energy conversion for 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, Dec. 2001.
    [6] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. on Industrial Electronics, vol. 53, no. 2, pp. 486-494, Apr. 2006.
    [7] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. on Power Electronics, vol. 20, no. 4, pp. 847-856, Jul. 2005.
    [8] J. S. Lai and Douglas J. Nelson, “Energy management power converters in hybrid electric and fuel cell vehicles,” Proceedings of the IEEE, vol. 95, no. 4, pp. 766-777, Apr. 2007.
    [9] R. J. Wai, W. H. Wang, and C. Y Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 240-250, Jan. 2008.
    [10] R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 3, pp. 953-964, Apr. 2008.
    [11] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel inverter topologies for stand-alone PV systems,” IEEE Trans. on Industrial Electronics, vol. 55, no. 7, pp. 2703-2712, Jul. 2008.
    [12] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, ” Multi-input inverter for grid-connected hybrid PV/wind power system,” IEEE Trans. on Power Electronics, vol. 22, no. 3, pp. 1070-1077, May 2007.
    [13] R. Gopinath, S. Kim, J. H. Hahn, P. N. Enjeti, M. B. Yeary, and J. W. Howze, ”Development of a low cost fuel cell inverter system with DSP control,” IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1256-1262, Sep. 2004.
    [14] J. Lee, J. Jo, S. Choi, and S. B. Han, ”A 10-kW SOFC low-voltage battery hybrid power conditioning system for residential Use,” IEEE Trans. on Energy Conversion, vol. 21, no. 2, pp. 575-585, Jun. 2006.
    [15] Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: An Overview,” IEEE Trans. on Power Electronics, vol. 19, No. 5, pp, 1305-1314, Sep. 2004.
    [16] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. on Industry Applications, vol. 41, No. 5, pp. 1292-1306, Sep./Oct. 2005.
    [17] A. M. Trzynadlowski, N. Patriciu, F. Blaabjerg, and J. K. Pedersen, ”A hybrid, current-source/voltage-source power inverter circuit,” IEEE Trans. on Power Electronics, vol. 16, no. 6, pp. 866-871, Nov. 2001.

    [18] A. M. Salamah, S. J. Finney, and B. W. Williams, ”Single phase voltage source inverter with a bidirectional Buck-Boost stage for harmonic injection and distributed generation,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 375-387, Feb. 2009.
    [19] F. Z. Peng, ”Z-source inverter,” IEEE Trans. on Industrial Appl, vol. 39, no. 2, pp. 775-781, Mar./Apr. 2003.
    [20] F. Z. Peng, M. Shen, and K. Holland, ”Application of Z-source inverter for traction drive of fuel cell battery hybrid electric vehicles,” IEEE Trans. on Power Electronics, vol. 22, no. 3, pp. 1054-1061, May 2007.
    [21] C. T. Pan and J. J. Shieh, “A single-stage three-phase Boost-Buck AC/DC converter based on generalized zero-space vectors,” IEEE Trans. on Power Electronics, vol. 14, no. 5, pp. 949-958, Sep. 1999.
    [22] C. T. Pan and J. J Shieh, “New space-vector control strategies for three-phase step-Up/down AC/DC converter,” IEEE Trans. on Industrial Electronics, vol. 47, no. 1, pp. 25-35, Feb. 2000.
    [23] J. Kikuchi and T. A. Lipo, “Three-phase PWM Boost-Buck rectifiers with power-regenerating capability,” IEEE Trans. on Industry Applications, vol. 38, no. 5, pp. 1361-1369, Sept./Oct. 2002.
    [24] J. Y. Chen, C.T. Pan, and Y.S. Huang, “Modeling of a three-phase step up/down AC/DC converter,” Asian Journal of Control, vol. 1, no. 1, pp.58-65, 1999.
    [25] M. A. Boost and P. D. Ziogas, “State-of-the-art carrier PWM techniques: A critical evaluation,” IEEE Trans. on Industry Applications, vol. 24, no. 2, pp. 271-280, Mar./Apr. 1988.
    [26] K. Taniguchi, Y. Ogino, and H. Irie, “PWM technique for power MOSFET inverter,” IEEE Trans. on Power Electronics, vol. 3, no. 3, pp. 328-334, Jul. 1988.

    [27] K. Middlebrook and S. Ćuk, “A general unified approach to modeling switching-converter power stages,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 18-34, Jun. 1976.
    [28] Pan Geng, Weimin Wu, Yinzhong Ye, and Yijian Liu, “Small singal modeling of a novel single-phase photovoltaic inverter,” IEEE Proc. IPEMC’09, pp. 2188-2192, May 2009.
    [29] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a microcontroller-based, photovoltaic maximum power point tracking control system,” IEEE Trans. on Power Electronics, vol. 16, no. 1, pp. 46-54, Jan. 2001.
    [30] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. on Industrial Electronics, vol. 52, no. 4, pp. 1145-1152, Aug. 2005.
    [31] C Wang and M. Nehrir, “Load transient mitigation for stand-alone fuel cell power generation systems,” IEEE Trans. on Energy Conversion, vol. 22, no. 4, pp. 864-872, Dec. 2007.
    [32] S. Y. Choe, J. W. Ahn, J. G. Lee, and S. H. Baek, “Dynamic simulator for a PEM fuel cell system with a PWM dc/dc converter,” IEEE Trans. on Energy Conversion, vol. 23, no. 2, pp. 669-680, Jun. 2008.
    [33] Jeff Falin, “Designing DC/DC converters based on SEPIC topology,” Texas Instruments Incorporated, Analog Applications Journal, pp. 18-23, Q4. 2008.
    [34] P. A. Dahono, A. Purwadi, and Qamaruzzaman, “An LC filter design method for single-phase PWM inverter,” IEEE Power Electronics and Drive Systems, vol. 2, pp. 571-576, Feb. 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE