簡易檢索 / 詳目顯示

研究生: 曾超群
論文名稱: 二維超聲振動輔助磨削碳化鎢合金之研究
A Study on Grinding Tungsten Carbide with Two-Dimensional Ultrasonic
指導教授: 左培倫
口試委員: 鄧建中
顏丹青
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 超聲輔助磨削加工二維振動超硬合金碳化鎢
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,工業各領域為了追求更好的產品性能,大量使用超硬合金來做材料。此種材料目前的加工方式仍是以磨削為主。然而這些材料的機械特性往往對於磨削加工帶來一定的困難度。且能允許的磨削參數範圍非常狹窄。加工中使用的砂輪也是昂貴的超級磨粒為磨料。在近年來的研究中證實了將超聲振動應用在傳統加工上,材料移除率、切削力、切削溫度都因而改善,同時也延長了刀具的壽命。但是超聲振動加工的機制傳統加工有明顯的不同。而超聲振動應用在傳統磨削加工上應該也會有相同的效果。因此本文希望對於超聲振動輔助磨削超硬合金的加工特性進行理論與實驗的研究,探討超聲輔助磨削和傳統磨削在加工超硬合金時其加工機制之差異,實驗將以材料移除率、表面粗糙度、磨削力、比磨削能及工件的表面狀況作為判斷指標。同時嘗試使用一般用的碳化矽砂輪。希望提供一個較高加工品質、較低成本且加工限制少的加工法。


    摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VI 第一章 簡介 1 1.1硬脆材料 1 1.2高硬度材料之應用 3 1.3模削加工對模具影響 5 1.4硬脆材料的破壞 5 1.5磨削加工(Grinding) 7 1.5.1幾何學之磨削理論 8 1.5.2磨削力和磨削能量之磨削理論 12 1.5.3磨削性能的判定指標[5] 14 1.6超聲振動輔助加工 16 1.6.1原理 16 1.6.2壓電效應 17 1.6.3壓電材料基本定律 18 1.6.4超聲波輔助加工的應用及優點 21 第二章 研究動機與目的 23 2.1研究動機 23 2.2研究目的 23 第三章 文獻回顧 25 3.1磨削難加工材料 25 3.2超聲輔助加工 28 3.3超聲輔助磨削 30 第四章 實驗規劃與設備 33 4.1實驗規劃 33 4.2實驗設備架設 34 4.3實驗材料 36 4.4磨削實驗 37 4.5 實驗設備 41 第五章 超聲振動輔助磨削機制探討 48 5.1 徑向振動[44] 48 5.2 軸向振動 49 5.3 二維方向超聲振動 50 5.4 二維超聲磨削作用機制模型 53 第六章 實驗結果分析與討論 57 6.1 超聲振動構件特性量測 57 6.1.1 功率放大器穩定性測試及增益量測 57 6.1.2振動子之共振頻率量測和電壓與振幅之關係 58 6.2磨削參數影響之實驗 61 6.3振動參數影響之實驗 64 6.4改變磨粒影響之實驗 73 6.5深切深影響之實驗 74 第七章 結論與未來展望 77 7.1結論 77 7.2未來展望 80

    [1] 安永暢男,高木純一郎,精密機械加工原理,全華圖書,2004
    [2] J. P. R. Soney, The significance of Chip Thickness in Grinding," Annals of the CIRP, vol. 36, pp. 463-471, 1990.
    [3] S. Malkin and E. Lenz, "Burning limit for surface and cylindrical grinding of steels," Annals of the CIRP, vol. 27, pp. 233-236, 1978.
    [4] Y. Furukawa, S. Ohishi, “Selection of Creep Feed Grinding Condition in View of Workpiece Burning”, Annals of the CIRP, Vol.28, No.1, pp.213, 1979.
    [5] 任敬心,康仁科,史興寬,難加工材料的磨削,國防工業出版社,1999
    [6] T. B. Thoe,D. K. Aspinwall, M. L. H. Wise, "Review on Ultrasonic Machining" , int. J. Mach. Tools Manufact, Vol. 38, No. 4, pp. 239-255, 1998
    [7] 張云電,超聲加工及其應用,國防工業出版,1995年9月
    [8] Chandra Nath, M. Rahman, S. S. K. Andrew, ‘‘A Study on Ultrasonic Vibration Cutting of Low Alloy Steel’’, Journal of Materials Processing Technology, 2007, 192-193, pp. 159-165.
    [8] 吳朗,電子陶瓷-壓電,全欣資訊圖書股份有限公司,1994年12月初版。
    [9] 許坤明,超音波熔接與旋轉熔接結合裝置,虎尾科技大學機械與電腦輔助工程系產學合作計畫,2007
    [10] 許溢适,壓電陶瓷新技術,文笙書局,1996年4月再版。
    [11] 楊晨暉,雙層壓電式超音波馬達之研究,台灣大學機械工程所碩士論文,2005
    [12] H. Onikura, O. Ohnishi, J. Feng, T. Kanda, T. Morita, U. Bopp, “Effects of Ultrasonic Vibration on Machining Accuracy in Micro-drilling”, Int.J.JSPE, Vol.30, No.3, pp.1633-1637, 1996.
    [13] 李漢州,利用振動切削技術應用於車削鑽削之研究,國立雲林科技大學機械所碩士論文,1999年。
    [14] 張淵智,振動切削技術應用於微銑削之研究,國立雲林科技大學機械所碩士論文,1999
    [15] 潘冠衛,振動加工應用於高速微銑削之研究,國立雲林科技大學機械所碩士論文,2004
    [16] B. Zhang, "Helical scan grinding of brittle and ductile materials," Journal of Materials Processing Technology, vol. 91, pp. 196-205, 1999.
    [17] H. Huang, et al., "High speed grinding of silicon nitride with resin bond diamond wheels," Journal of Materials Processing Technology, vol. 141, pp. 329-336, 2003.
    [18] S. Malkin, "Grinding of metals: theory and application," Journal of Applied Metalworking, vol. 3, pp. 95-109, 1984.
    [19] E. Pecherer and S. Malkin, "Grinding of steels with cubic boron nitride (CBN)," CIRP Annals-Manufacturing Technology, vol. 33, pp. 211-216, 1984.
    [20] I. Inasaki, "Grinding of hard and brittle materials," CIRP Annals-Manufacturing Technology, vol. 36, pp. 463-471, 1987.
    [21] Z. Bi, et al., "Study on surface cracking of alumina scratched by single-point diamonds," Journal of materials science, vol. 23, pp. 3214-3224, 1988.
    [22] S. JOHANSSON and J. A. N. A. K. E. SCHWEITZ, "Contact Damage in Single Crystalline Silicon Investigated by Cross Sectional Transmission Electron Microscopy," Journal of the American Ceramic Society, vol. 71, pp. 617-623, 1988.
    [23] H. H. K. Xu, et al., "Effect of grain size on scratch interactions and material removal in alumina," Journal of the American Ceramic Society, vol. 78, pp. 881-891, 1995.
    [24] R. King and D. Tabor, "The strength properties and frictional behaviour of brittle solids," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp. 225-238, 1954.
    [25] Z. Zhong, "Ductile or partial ductile mode machining of brittle materials," The International Journal of Advanced Manufacturing Technology, vol. 21, pp. 579-585, 2003.
    [26] 廖錫田,矽晶圓薄化技術之研究,國立台灣大學博士論文,2005
    [27] Amir abdullah, Abbs Pak, Mahdi Farahi, Mohsen Barzegari "Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creeo-feed grinding of cemented tungsten carbide" , Journal of Materials Processing Technology, Vol.183, pp.165-168, 2007
    [28] T. W. Liao, K. Li., S, B, McSpadden, Jr., L.j. O’rourke "Wear of diamond wheels in creep-feed grinding of ceramic materials I. Mechanisms" , Wear Vol.211, pp94-103, 1997
    [29] T. W. Liao, K. Li., S, B, McSpadden, Jr., L.j. O’rourke "Wear of diamond wheels in creep-feed grinding of ceramic materials II. Effects on process responses and strength" , Wear Vol.211, pp104-112, 1997
    [30] T. Bifano and T. Dow, "Ductile-regime grinding: a new technology for machining brittle materials," Journal of Engineering for Industry(Transactions of the ASME), vol. 113, pp. 184-189, 1991.
    [31] Chandra Nath, M. Rahman, S. S. K. Andrew, ‘‘A Study on Ultrasonic Vibration Cutting of Low Alloy Steel’’, Journal of Materials Processing Technology, 192-193, pp. 159-165, 2007.
    [32] J.S. Khamba, et al., " Ultrasonic machining of titanium and its alloys: A review," Materials Processing Technology, vol. 173, pp. 125-135, 2006.
    [33] H. Weber, et al., "Turning of machinable glass ceramics with an ultrasonically vibrated tool," CIRP Annals-Manufacturing Technology, vol. 33, pp. 85-87, 1984.
    [34] T. Moriwaki, et al., "Ultraprecision ductile cutting of glass by applying ultrasonic vibration," CIRP Annals-Manufacturing Technology, vol. 41, pp. 141-144, 1992.
    [35] E. Uhlmann and G. Spur, "Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance," CIRP Annals-Manufacturing Technology, vol. 47, pp. 249-252, 1998.
    [36] T. JACOBS, et al., "Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 based Ceramic Materials," Proceedings of 4th CIRP International Conference on High Performance Cutting, 2010.
    [37] G. Spur, et al., "Ultrasonic assisted grinding of ceramics," Industrial Ceramics(Italy)(Italy), vol. 21, pp. 177-181, 1996.
    [38] W. Qu, et al., "Using vibration-assisted grinding to reduce subsurface damage," Precision engineering, vol. 24, pp. 329-337, 2000.
    [39] GAO Guofu, et al., "Research on Plastic Removal Mechanism of Engineering Ceramics Grinding with Ultrasonic Assistance," International Technology and Innovation Conference, 2006.
    [40] Dong Zhao, Haiting Zhang, "Study on Ultrasonic Aided Grinding Process," 2010 Second International Conference on Computer Modeling and Simulation.
    [41] B. Denkena, et al., "Potentials of different process kinematics in micro grinding," CIRP Annals-Manufacturing Technology, vol. 52, pp. 463-466, 2003.
    [42] Taghi Tawakoli, Bahman Azarhoushang, "Influence of ultrasonic vibrations on dry grinding of soft steel," International Journal of Machine Tools & Manufacture, 2008.
    [43] Z. Liang, et al., "A new two-dimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in monocrystal silicon machining," International Journal of Machine Tools and Manufacture, vol. 50, pp. 728-736, 2010.
    [44] 黃郁珊,超聲振動輔助磨削硬脆材料之研究,國立清華大學機械所碩士論文,2011

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE