研究生: |
葛振廷 Cheng-Ting Ko |
---|---|
論文名稱: |
微型心血管壓力感測器之設計與製作 Design and Fabrication of An Ultra Miniature Pressure Sensor in Conventional CMOS For a Cardiovascular Catheter |
指導教授: |
盧向成
Michael S.-C. Lu Shiang-Cheng Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 心血管手術 、生醫晶片 、微機電系統 、壓力感測器 、震盪器電路 、互補式金氧半微機電製程 |
外文關鍵詞: | Balloon angioplasty, biochips, MEMS, Pressure sensor, RC-Oscillator circuit, CMOS MEMS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們用互補式金氧半微機電(CMOS MEMS)製程來設計一個整合式的壓力感測器,預期會用在心血管手術中的血壓量測上。由於需要很小尺寸的元件,所以預期上感測度不會太高。我們使用一個電容式感測電路把壓力引起的電容值變化轉換成震盪器的頻率變化。完成互補式金氧半製程後,接著的後製程會把生醫相容的高分子聚合物沉積在薄膜的上方,而利用犧牲層金屬蝕刻可以釋放在高分子聚合物下的微機械結構薄膜,在某些設計上震盪器感測電路可以直接放在結構薄膜的下面,如此一來又可以節省面積。我們目前的設計量測出來可達到421 kHz/fF的感測度。
We propose the use of CMOS-MEMS technology to fabricate a monolithically integrated pressure sensor intended for blood pressure monitoring during balloon angioplasty. Due to the small device size, a low sensitivity is expected. We employ a capacitive sensing circuit to convert the pressure-induced capacitive change to a shift of the oscillation frequency. The post-fabrication steps after completion of the CMOS include the use of a bio-compatible Parylene coating on top of the membrane, and a sacrificial metal etch to release the micromechanical membrane underneath the Parylene. In some design the readout circuit is a CMOS oscillator which can be placed directly underneath the membrane to save chip area. Our current design shows a sensitivity of 421 kHz/fF.
[1] N. Pijls, Coronary Pressure. Norwell, MA, Kluwer Academic, 1997.
[2] S. Chatzandroulis et al., “A miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications,” J. Microelectromechanical Syst., vol. 9, no. 1, pp. 18-23, Mar. 2000.
[3] K. Stangel et al., “A programmable intraocular CMOS pressure sensor implant,” IEEE J. Solid-state Circuits, vol. 36, no. 7, pp. 1094-1100, July 2001.
[4] P. Melvås et al., “A surface-micromachined resonant-beam pressure-sensing structure,” J. Microelectromechanical Syst., vol.10, no. 4, pp. 498-501, December 2001.
[5] L. Tenerz et al., “A fiberoptic silicon pressure microsensor for measurements in coronary arteries,” in Transducers ’91, 1991.
[6] T. Katsumata et al., “Micromachined 125 □m diameter ultra miniaturefiber-optic pressure sensor for catheter,” Trans. Inst. Elect. Eng. Jpn. E, vol. 120 E, pp. 58-63, 2000.
[7] E. Kalvestern et al., “The first surface micromachined pressure for cardiovascular pressure measurements,” in Proc. MEMS, pp. 574-579, 1998.
[8] Samaun et al., “An IC piezoresistive pressure sensor for biomedical instrumentation,” IEEE Trans. on Biomed. Eng., vol. 20, pp. 101-109, March, 1973.
[9] W.H. Ko et al., “Development of a miniature pressure transducer for biomedical applications, “ IEEE Trans. Electron Devices, vol. 26, pp. 1896-1905, 1979.
[10] J.M. Borky and K.D. Wise, “Integrated signal conditioning for silicon pressure sensor,” IEEE Trans. Electron Devices, vol. 26, pp. 1906-1910, 1979.
[11] J. Ji et al., “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. on Electron Devices, vol. 39, no. 10, pp. 2260-2267, October, 1992.
[12] W. H. Ko et al., “A high-sensitivity integrated-circuit capacitive pressure sensor,” IEEE Trans. on Electron Devices, vol. 29, pp. 48-56, Jan., 1982.
[13] C. S. Sander et al., “A monolithic capacitive pressure sensor with pulse-period output, IEEE Trans. Electron Devices, vol. 27, pp. 927-930, 1980.
[14] M.S.J. Smith et al., “Analysis, design, and performance of a capacitive pressure sensor IC,” IEEE Trans. Biomed. Eng., vol. 33, pp. 163-174, 1986.
[15] J. Bernstein, R. Miller, W. Kelley, and P. Ward, “Low-noise MEMS vibration sensor for geophysical application,” J. of Microelectromechanical Systems, vol.8, no. 4, pp. 433-438, December, 1999.
[16] G. K. Fedder, Simulation of microelectromechanical systems, Ph.D. Thesis, University of California, Berkeley, 1994.
[17] H. Dudaicevs et al., “Surface micromachined pressure sensors with integrated CMOS read-out electronics,” Sensors and Actuators A (Physical), vol. 43, no. 1-3, pp. 157-163, May, 1994.
[18] S.P. Timoshenko and S. Woinowsky-Krieger, Theory of Plate and Shell, 2nd ed. McGraw-Hill, New York, 1970.
[19] S. P. Timoshenko and J. N. Goodier. Theory of Elasticity, chapter 10, pp. 309{313.McGraw-Hill, New York, New York, 3rd ed., 1970.
[20] O. Paul, D. Westberg, G.I. Anderson, H. Baltes, “Sacrificial aluminum etching for CMOS microstructures,” Micro Electro Mechanical Systems, MEMS ’97,proceedings, IEEE, p. 523-528, Jan. 1997.
[21] 陳永霖,” 伺服控制之光通訊大型光學開關之設計與製作”,國立清華大學電子工程學系碩士論文,2004.
[22] A.Dec, and K.Suyama, “A 2.4GHz CMOS LC Using Micromachined Variable Capacitors for Frequency Tuning,” IEEE MTT-S Digest. pp79-82 (1999).
[23] A. Dec, and K. Suyama, “Micromachined Electro-Mechanically TunableCapacitors and Their Application to RF IC’s,” IEEE Transactions on MicrowaveTheory and Techniques, vol. 46, pp. 2587-2596 (1998).
[24] J. M. Lopez-Villegas, J. Bausells, A. Merlos, C. Cane, and R. Knochel, “Study of Integrated RF Passive Components Performed Using CMOS and Si Micromachining technologies,” IOP Journal of Micromachining and Microengineering, pp. 162-164 (1997).
[25] W. Z. Sadeh, and H. J. Brauer, “A Visual Investigation of Turbulence in Syagnation Flow about a Circular Cylinder,” J. Fluid Mech., 99.1, p. 53, 1980.
[26] W. B. Scott, “Micro-Machines Hold Promise for Aerospace,” Aviation Week & Space Technology, pp. 36-39, 1993.
[27] K. E. Peterson, “Silicon as A Mechanical Material,” Proceeding of the IEEE, 70.5, p. 420, 1982.
[28] H. Guckel, and D. Burns, Planar Processed Polysilicon Sealed Cavities for Pressure Transducers Array, pp. 223-225, IEDM, 1984.
[29] G. S. Chung, S. Kawahito, M. Ishida, and T. Nakamura, “Novel Pressure Sensors with Multilayer SOI Structure ,” Electronics Leters, 26, pp. 775-777, 1990.
[30] S. Susumu, and K. Shimaoka, “Surface Micromachine Micro-Diaphragm Pressure Sensors,” Solid–State Sensors and Actuators, pp. 188-191, 1991.
[31] J. Fukang, Y. C. Tai, W. Walsh, T. Tom, G. B. Lee, and C. M. Ho, “A Flexible MEMS Technology And Its First Application To Shear Stress Sensor Skin,” IEEE, MEMS-97, pp. 465-470, 1997.
[32] E. Kalvesten, “The First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurements,” IEEE, MEMS-98, pp. 574-579, 1998.
[33] D. J. Beebe, and D. D. Denton, “Flexible Polyimide-Based Package for Silicon Sensors,” Sensors and Actuators, A44, pp. 57-64, 1994. 124
[34] M. Marc , Fundamentals of Microfabrication, p. 256, Boca raton, New York, 1997.
[35] R. A. Levy, Microelectronic Materials and Processes, p.145, Kluwer, 1986.
[36] J. S. Judge, Etching for Pattern Definition, p. 19, Electrochmeical Society, Londa, 1976.
[37] S. Wolf, Silicon Process for the VLSI Era, p. 442, Lattice Press, 1986.
[38] W. G. Julian, Microsensors: Principles and Applications, p. 447, Gardner, New York, 1996.
[39] D. Poenar, P. French, J. R. Mallee, and P. M. Sarro, “Psg Layers for Surface Micromachining,” Sensors and Actuators, A.41, pp. 304-309, 1994.
[40] K. E. Petersen, “Silicon as A Mechanical Material,” Proc. IEEE, 70.5, pp. 420-457, 1982.
[41] R. Ljubisa, Sensor Technology and Device, pp. 119-125, Artech House Boston, London, 1993.
[42] S. Timosheko, Theory of Plate and Shells, pp. 4-27, McGraw-Hill, 125
New York, 1970.
[43] S. M. Sze, Semiconductor Sensors, pp. 171-176, A Wiley-interscience Publication, New York, 1994.
[44] R. Ljubisa, Sensor Technology and Device, p. 313, Artech House Boston, London, 1993.
[45] A. P. Boresi, Advanced Mechanics of Materials, p.253, Wiley, New York, 1993.
[46] L. W. Lin, and W. J. Yun, “MEMS Pressure for Aerospace Applications,” IEEE, Aerospace Conference, l.1, pp. 429 -436, 1998.
[47] M. Marc, Fundamentals of Microfabrication, pp. 217-230, Boca Raton, New York, 1997.