簡易檢索 / 詳目顯示

研究生: 甘政立
Kan,Cheng-Li
論文名稱: 橫向高電壓4H-SiC接面場效電晶體設計與製作
The Design and Fabrication of Lateral High Voltage 4H-SiC JFETs
指導教授: 黃智方
Huang,Chih-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 71
中文關鍵詞: 橫向高電壓元件4H-碳化矽接面場效電晶體
外文關鍵詞: Lateral high voltage device, 4H-SiC, JFET
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 寬能帶半導體材料(Wide band gap semiconductor material)在最近幾十年的研究中,有許多不錯的研究結果發表,為下一個世代半導體元件材料的發展主流。碳化矽(Silicon Carbon)是寬能帶半導體材料之一,相較於其他的半導體材料如矽、鍺、砷化鎵而言,寬能帶半導體材料碳化矽(SiC)的電子元件有許多優勢,適合運用於高功率元件。
    本篇論文主旨在進行4H-SiC橫向高電壓的接面場效電晶體的研製。元件設計利用雙漂移區域的結構以降低表面電場並用場平板保護閘極及汲極,以提高崩潰電壓。此外我們也結合絕緣基板,目的為避免基板助長空乏效應。本論文利用蝕刻的方式形成雙漂移區域降低表面電場的結構,可以減少離子摻雜的製程步驟。
    在本論文中,我們將製作不同長度的漂移區、不同的雙漂移區域降低表面電場結構長度、與不同長度的場平板結構。從量測結果可看出,當漂移區長度越長,則元件的崩潰電壓越高。經過量測後,雙漂移區的接面場效電晶體在閘極寬度為200µm及漂移區為100µm時,可獲得導通電阻454 mΩ-cm2 ,崩潰電壓可達4199伏特。


    The main purpose of this thesis is to fabricate a high voltage 4H-SiC lateral junction field effect transistor. In order to reduce the specific-on-resistance and enhance the breakdown voltage, we use a two-zone design in the drift region, and field plates at the gate and the drain. Furthermore, we also use the semi-insulating substrate to reduce the substrate-assisted-depletion effect. By using the reactive ion etch to fabricate the two-zone structure, we can avoid the difficult implantation process in SiC.
    The measurement results show that the breakdown voltage increases with the drift region length. A two-zone SiC JFET with gate width of 200µm and a lateral drift-region length of 100µm can achieve breakdown voltage is 4199V. The specific-on-resistance of this device is 454 mΩ-cm2 .

    目錄 中文摘要…………………………………………………………………I Abstract……………………………………………………………… II 致謝……………………………………………………………………III 目錄……………………………………………………………………VII 圖目錄……………………………………………………………………X 表目錄………………………………………………………………… XV 第一章 序論...............................................1 1.1 前言..................................................1 1.2 碳化矽的材料特性......................................1 1.3 研究動機與文獻回顧....................................4 1.4 論文大綱..............................................9 第二章 元件光罩設計及理論................................10 2.1 元件結構與設計.......................................10 2.1.1 Two-zone RESURF結構應用於JFET ....................11 2.1.2 場平板(Field plate)結構應用於JFET.................13 2.1.3 半絕緣基板(semi-insulating)應用於JFET.............13 2.2 元件光罩設計.........................................14 2.3 元件設計種類.........................................19 第三章 元件製程實驗......................................22 3.1 元件濃度及正反面確認.................................22 3.2 實驗流程.............................................24 3.3 JFET元件製作流程.....................................32 3.3.1 蝕刻對準區域圖案..................................32 3.3.2 蝕刻two-zone RESURF區域及body區域.................33 3.3.3 P型掺雜製程.......................................36 3.3.4 N型摻雜製程.......................................42 3.3.5 活化製程..........................................44 3.3.6 蝕刻絕緣區........................................45 3.3.7 毆姆接點..........................................47 3.3.8 場平板............................................50 第四章 量測結果與分析....................................52 4.1 JFETs電流-電壓量測與分析.............................52 4.2 溫度變化.............................................57 4.3 漂移區長度對導通電阻的影響...........................60 4.4 介面捕陷電子對JFET的影響.............................61 4.5 JFETs 崩潰電壓量測...................................64 4.5.1 量測系統..........................................64 4.5.2 崩潰電壓量測......................................65 第五章 結論與未來工作建議................................67 參考文獻.................................................69

    [1] C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon Carbide High-Power Devices,” IEEE Trans. Electron Dev., vol. 43, no. 10, pp. 1732-1741, Oct. 1996.
    [2] J. Millán, P. Godignon, D. Tournier, “Recent Development in SiC Power Devices and Related Technology”, Proc. 24th International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, vol. 1, NIS, pp. 16-19, May 2004.
    [3] J. Richmond, S. H. Ryu, M. Das, S. Krishnaswami, S. Hodge Jr., A. Agarwal and J. Palmour, ”An Overview of Cree Silicon Carbide Power Devices,” Presented at 8th Workshop on Power Electronics in Transportation(WPET 2004), Sheraton Detroit Novi, Michign, USA , pp 37-42, Oct. 2004.
    [4] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
    [5] H. S. Lee, ”High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
    [6] T. P. Chow, N. Ramungul, and M. Ghezzo, “Wide Bandgap Semiconductor Power Device,” Power Semiconductor Material and Device, p89-102, 1997.
    [7] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
    [8] T. Fujihira, ”Theory of Semiconductor Super Junction Devices.” Jpn. J. Appl. Phys., vol. 36, pp. 6254-6262, 1997.
    [9] L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOS TM- A New Milestone in High Voltage Power MOS,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 3-10, 1999.
    [10] S. G. Nassif-Khalil and C. A. T. Salama, “ Super-junction LDMOST on a Silicon-on-Sapphire Substrate,”IEEE Trans. Electron Devices, vol. 50, pp. 1385-1391, 2003.
    [11] J. A. Appels and H. M. J. Vas, “HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES),” IEDM Tech. Dig., pp. 238, 1979.
    [12] N. S. Saks, S. S. Mani, A. K. Agarwal, and M. G. Ancona, ”A 475-V High Voltage 6H-SiC Lateral MOSFET,” IEEE Electron Device Lett., vol. 20, pp. 431-433, 1999.
    [13]K. Chatty, S. Banerjee, T. P. Chow, and R. J. Gutmann, ”High-Voltage Lateral RESURF MOSFETs on 4H-SiC,” IEEE Electron Device Lett., vol. 21, pp. 356-358, 2000.
    [14] S. Banerjee, K. Chatty, T. P Chow and R. J. Gutmann,”Improved High-Voltage Lateral RESURF MOSFETs in 4H-SiC,” IEEE Electron Device Lett., vol. 22, pp. 209-211, 2001.
    [15] S. Banerjee , T. P. Chow, and R. J. Gutmann, ”1300-V 6H-SiC Lateral MOSFETs with Two RESURF Zones,” IEEE Electron Device Lett., vol. 23, pp. 624-626, 2002.
    [16] T. Kimoto, H. Kawano and J. Suda,“1200V-Class 4H-SiC RESURF MOSFETs with Low On-Resistances,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005.
    [17] T. Kimoto, H. Kawano, and J. Suda,“1330V, 67 mΩ-cm2 4H-SiC(0001) RESURF MOSFET,” IEEE Electron Device Lett., vol. 29, pp. 649-651, 2005.
    [18] K. Fujikawa, K. Shibata, and T. Masuda,“800V 4H-SiC RESURF-type lateral JFETs,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 790-791, Dec. 2004.
    [19] M. Su, K. Sheng, and Y. Li,“430-V 12.4 mΩ-cm2 Normally OFF 4H-SiC Lateral JFET," IEEE Electron Device Lett., vol. 27, no. 10, pp.834-836, 2006
    [20] K. Sheng, and Y. Li, “1000-V 9.1 mΩ-cm2 Normally OFF 4H-SiC Lateral JFET," IEEE Electron Device Lett., vol. 28, no. 5, pp. 404-407, 2007
    [21] C. F. Huang, J. R. Kuo, and C. C. Tsai, ”High Voltage (3130V) 4H-SiC Lateral p-n Diodes on a Semiinsulating Substrate,” IEEE Electron Device Lett, vol.29, no.1, 2008
    [22] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Companies, Inc., 2003.
    [23] N. Sghaier, J. M. Bluet, and A. Souifi, “Study of Trapping Phenomenon in 4H-SiC MESFETs: Dependence on Substrate Purity,” IEEE Trans. Electron Device, vol. 50, no. 2, pp. 297-302, Feb. 2003.
    [24] Frédéric Villard, and J.-P. Prigent, “Trap-Free Process and Thermal Limitations on Large-Periphery SiC MESFET for RF and Microwave Power, ” IEEE Trans. Electron Device, vol. 51, no. 4, pp. 1129-1134, Apr. 2003.
    [25] Ho-Young Cha, C. I. Thomas, and G. Koley,“ Reduced Trapping Effects and Improved Electrical Performance in buried-gate 4H-SiC MESFETs,” IEEE Trans. Electron Dev., vol. 50, no. 7, pp. 1569-1574, July 2003.
    [26] W. Wang, S. Banerjee, T. P. Chow, and R. J. Gutmann,“930V, 170mΩ-cm2 Lateral Two-Zone RESURF MOSFETs in 4H-SiC with NO Annealing”, IEEE Electron Device Lett., vol. 25, pp. 185-187, April 2004.
    [27] M. Noborio, Y. Negoro, J. Suda and T. Kimoto,“Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs,” Materials Science Forum, vol. 527-529, pp. 1307, 2006.
    [28] M. Noborio, J. Suda, and T. Kimoto, “4H-SiC Lateral Double RESURF MOSFETs with Low on Resistance,” IEEE Trans. Electron Devices, vol. 54, no. 5, May 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE