簡易檢索 / 詳目顯示

研究生: 王渝貿
Wang, Yu-Mao
論文名稱: 消除瑞利反向散射機制與被動解偏振多工接收之光學多頻帶正交分頻多工被動光學網路系統
Rayleigh Backscattering Cancellation Mechanism and Passive Polarization Division De-multiplexing Receiving in a Multiband DDO-OFDM PON System
指導教授: 馮開明
口試委員: 賴暎杰
邱奕鵬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 58
中文關鍵詞: 被動光學網路正交分頻多工瑞利反向散射被動偏振多工
外文關鍵詞: passive opticak network, orthogonal frequency-division multiplexing, Rayleigh backscattering, passive polarization division dultiplexing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著消費性電子產品的普及與網路使用習慣的改變,近年來訊號的傳輸速率比起往年呈現指數型增長,隨之而來的硬體升級亦是建置成本上的一大挑戰。在都會型網路的架構中,如何沿用現有的硬體並提升資訊傳輸量,並以低成本實現用戶端的接收與上傳,是現在網路系統中熱門的議題。
    本論文首先敘述DDO-OFDM的產生與接收原理,再描述被動光學網路的演進與OFDM PON的優勢。以多頻帶DDO-OFDM作為基底,應用於被動光學網路的架構中作為下傳,並搭配多頻帶Nyquist QPSK上傳,完成一套PON的系統。在實驗上證明在同一光纖中傳輸時,操作時同波長的上下傳訊號會因瑞利反向散射(Rayleigh backscattering)而影響訊號品質,並提出一套可以迴避瑞利反向散射的模型運用在PON之上,並進一步擴展成八通道的WDM系統。此外,為再提升訊號傳輸量,論文中提出一套可相容於原系統上的被動偏振多工模組,並與主動的偏振多工系統相比較,使系統提升一倍的傳輸效率。


    In recent years, with the popularity of consumer electronics products and network usage, the data rate of signal transmission has been increasing exponentially. How to upgrade the hardware while remaining low cost is a challenge. Therefore, It is a hot topic to enhance the data rate on existing hardware. So that, the transiver cost of network users can be reduced.
    In this thesis, we explained the generation and reception of DDO-OFDM, the evolution of passive optical network (PON) and the advantage of OFDM PON. Then, the PON system was realized based on multi-band OFDM downstream and multi-band Nyquist QPSK upstream. In the PON system, we verified the Rayleigh backscattering (RBS) interferes between upstream and downstream signals if signals ware operated in the same frequency and fiber. Then, we proposed and demonstrated a model that could avoid RBS in a combined bi-directional system. By this system, eight channels WDM system has been realized. Beside, we demonstrated a passive polarization division multiplexing (PDM) receiving system, which can double the data rate in the existing PON system.

    第一章 緒論 1-1通訊發展趨勢 1-2研究目的與動機 1-3論文編排 第二章 正交分頻多工系統 2-1 OFDM系統的調變與解調 2-2 OFDM系統的電-光轉換 2-3 OFDM系統的光-電轉換 第三章 被動式光學網路 3-1接取網路簡介 3-2 被動式光學網路 第四章 基於DDO-OFDM下行與Nyquist QPSK上行之無瑞利反向散射分波多工被動式光學網路系統 4-1 光纖中的瑞利散射 4-2 實驗架構 OLT的多頻帶OFDM傳輸架構 ONU的接收架構 ONU的上傳架構 OLT的接收架構 4-3 實驗流程 多頻帶OFDM下傳架構 Nyquist QPSK 上傳架構 4-4 實驗數據 多頻帶OFDM下傳架構 Nyquist QPSK 上傳架構 4-5 下傳937Gbs/上傳446Gbs WDM PON 第五章 被動解偏振多工DDO-OFDM 5-1 自動偏振追蹤系統 5-2 實驗架構 5-3 實驗流程 5-4 實驗數據 第六章 結論 參考文獻

    [1] http://www.telegeography.com/research-services/global-bandwidth-research-service/index.html
    [2] R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data transmission,” Bell System Technology Journal 45(10), pp. 1775-1796 (1966)
    [3] S. J. Savory, “Digital signal processing options in long haul transmission,” in Optical Fiber Communication Conference, paper OTuO3, San Diego (2008)
    [4] Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Optics Express 17(11), pp. 9421-9427 (2009).
    [5] J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonic Technology Letter 23(15), pp. 1061-1063 (2011).
    [6] W. R. Peng, I. Morita, H. Takahashi, and H. Tanaka, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” Journal of Lightwave Technology 30(12), pp. 2025-2034 (2012).
    [7] L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE Journal of Optical Communication Networking 3(11), pp. 881-890 (2011).
    [8] N. Cvijetic, M. F. Huang, E. Ip, Y. Shao, Y. K. Huang, M. Cvijetic, and T. Wang, “Coherent 40Gb/s OFDMA-PON for long-reach (100+ km) high-split ratio (>1:64) optical access/metro networks,” in Optical Fiber Communication Conference, paper OW4B.8, Los Angeles (2012).
    [9] A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Optics Express 16(2), pp. 860-865 (2008).
    [10] R. I. Killey, P. M. Watts, V. Mikhailov, M. Glich, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator”, IEEE Photonic technology Letters 17(3), (2005).
    [11] A. J. Lowery, “Improving sensitivity and spectral efficiency in direct-detection optical OFDM systems,” in Optical Fiber Communication Conference, paper OMM4, San Diego (2008).
    [12] N. Ansari and J. Zhang, Media Access Control and Resource Allocation for Next Generation Passive Optical Networks, Springer (2013).
    [13] C. Gao, G. Farrell, “Modelling of Rayleigh backscattering on plastic optical fiber”, High Frequency Postgraduate Student Colloquium, IEEE UK and Ireland section, Belfast, Northern Ireland (2003).
    [14] S. D. Personick, “Photon probe—an optical-fiber time-domain reflectometer,” Bell System Technical Journal 56(3), pp.355–366 (1977).
    [15] J. H. Yan, Y. W. Chen, K. H. Shen, and K. M. Feng, “A 1:128 high splitting ratio long reach PON based on a simple receiving design for ONU with 120-Gb/s double-sided multiband DDO-OFDM signal,” in Optical Fiber Communication Conference, paper JW2A.74, Anaheim (2013).
    [16] A. Chowdhury, H.C. Chien, M. F. Huang, J. Yu, G. K. Chang, “Rayleigh backscattering noise-eliminated 115-km long-reach bidirectional centralized WDM-PON with 10-Gb/s DPSK downstream and remodulated 2.5-Gb/s OCS-SCM upstream signal,” IEEE Photonics Technology Letters 20(24), (2008).
    [17] C. W. Chow, C. H. Yeh, Y. F. Liu, C. H. Wang, C. L. Wu, S. Chi, “Carrier distributed PON using SSB-CS signal for rayleigh backscattering suppression,” in 15th OptoeElectronics and Communications Conference, paper 7P-07, Sapporo (2010).
    [18] C. H. Yeh, C. W. Chow, and H. Y. Chen, “Simple colorless WDM-PON with Rayleigh backscattering noise circumvention employing m-QAM OFDM downstream and remodulated OOK upstream signals,” Journal of Lightwave Technology 30(13), pp. 2151-2155 (2012).
    [19] S. L. Jansen, I. Morita, T. C. W. Schenk, H Tanaka, “121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF”, Journal of Lightwave Technology 27(3), pp.177-188 (2009).
    [20] C. C. Wei, C. T. Lin, C. Y. Wang, F. M. Wu, “A novel polarization division multiplexed OFDM system with a direct-detection BLAST-aided receiver,” in Optical Fiber Communication Conference, paper JTh2A.49, Anaheim (2013).
    [21] W. R. Peng, K. M. Feng, A.E. Willner, “Direct-detected polarization division multiplexed OFDM systems with self-polarization diversity” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, paper MH3, Acapulco (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE