研究生: |
鍾惠雯 Chung, Hui-Wen |
---|---|
論文名稱: |
BDNF提升大鼠大腦皮質神經細胞之軸突上 hnRNPs Q和R的表現量 BDNF elevates the axonal levels of hnRNPs Q and R in cultured rat cortical neurons |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
簡昆鎰
Chien, Kun-Yi 周韻家 Chou, Yun-Chia 周姽嫄 Chow, Wei-Yuan 張壯榮 Chang, Chuang-Rung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | hnRNP Q 、hnRNP R 、軸突 、軸突運輸 、腦源性神經營養因子 、局部轉譯 、多重反應監測質譜 、新生成蛋白質 |
外文關鍵詞: | hnRNP Q, hnRNP R, Axon, Axonal transport, BDNF, Local translation, Multiple reaction monitoring mass spectrometry, Newly synthesized proteins |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Chapter I.
局部轉譯在軸突中,對於維持以及各種功能上扮演著重要的角色,而軸突中局部轉譯的功能不良亦牽涉到許多神經系統性的疾病。異質性核醣核酸蛋白質(hnRNPs) 是核糖核酸 (RNA) 的結合蛋白質,在RNA代謝中具有多種功能。在此篇研究中,我們藉由整合後的大鼠蛋白質體數據庫分析比對已發表的軸突質譜鑑定數據庫,指出在培養的大鼠大腦皮質神經元細胞中的軸突具有20種hnRNPs。在鑑定到的hnRNPs中,hnRNPs Q和R之間的序列是具有高度相似性。同時,反轉錄聚合酶鏈式反應結果顯示軸突裡的hnRNPs Q和R的mRNAs含量並不高。我們更進一步發現在BDNF刺激下,會提升神經細胞及軸突中hnRNPs Q和R蛋白質的表現量。此外,BDNF的刺激亦會增加軸突中poly(A) RNA的表現量以及含有hnRNPs Q和R的poly(A) RNA顆粒的比例。然而,在切斷神經細胞本體與軸突之間的連結後,BDNF仍可以刺激被切斷後的軸突之局部轉譯,如同它能刺激完好的軸突一樣,但是BDNF卻無法提高軸突中hnRNPs Q和R蛋白質的表現量、poly(A) RNA的含量以及poly(A) RNA與hnRNPs Q和R的colocalization。此結果也與BDNF可增加RNA顆粒在軸突中傳遞運送的結果一致,更進一步顯示BDNF會藉由增加軸突上RNA的運送來調控hnRNPs Q和R的表現量。
Chapter II:
在已存在的高含量蛋白質中鑑定新生成蛋白質的合成是一項具有挑戰性的研究。為了克服這個困難,我們嘗試利用多重反應監測質譜分析(MRM-MS)並結合脈衝標記定量蛋白質組學分析(pSILAC),在短時間內使用胺基酸進行穩定同位素的標定,做為研究新生成蛋白質合成的方法。相較於傳統的全掃描式質譜分析,多重反應監測質譜分析的特色是只在所選擇的候選胜肽之特定的母離子中的質荷比範圍內做掃描,減少了其他離子信號的干擾,以提高檢測的靈敏度和準確度。本篇研究中,我們選擇了72種候選蛋白質,並預先使用神經母細胞瘤N2a (Neuro-2a) 細胞,在經過2小時的新生成蛋白質之標定後,收集其蛋白質來測試此方法的可能性。 隨後,我們更進一步將此方法應用於神經細胞與軸突的新生成蛋白質之鑑定。從初步結果來看,在神經細胞和軸突中可以分別鑑定到16種和1種蛋白質。
Chapter I:
Local translation plays important roles in the maintenance and various functions of axons, and dysfunctions of local translation in axons are implicated in various neurological diseases. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA binding proteins with multiple functions in RNA metabolism. Here, we identified 20 hnRNPs in the axons of cultured rat cortical neurons by interrogating published axon mass spectrometric databases with rat protein databases. Among those identified in axons are highly related hnRNPs Q and R. RT-PCR analysis indicated that axons also contained low levels of hnRNPs Q and R mRNAs. We further found that BDNF treatments raised the levels of hnRNPs Q and R proteins in whole neurons and axons. BDNF also increased the level of poly(A) RNA as well as the proportion of poly(A) RNA granules containing hnRNPs Q and R in the axon. However, following severing the connection between the cell bodies and axons, BDNF did not affect the levels of hnRNPs Q and R, the content of poly(A) RNA, or the colocalization of poly(A) RNA and hnRNPs Q and R in the axon any more, although BDNF still stimulated the local translation in severed axons as it did in intact axons. The results are consistent with that BDNF enhances the axonal transport of RNA granules. The results further suggest that hnRNPs Q and R play a role in the mechanism underlying the enhancement of axonal RNA transport by BDNF.
Chapter II:
Measuring the synthesis of new proteins in the high-abundant of pre-existing proteins is challenging. To overcome this obstacle, we tried to perform a combination method of multiple reaction monitoring mass spectrometry (MRM-MS) assay and pulsed stable isotope labeling with amino acids in cell culture (pSILAC) to study protein synthesis. In order to increase the sensitivity and accuracy of detection, selected peptide’s transitions of MRM which scan across narrow m/z range instead of conventional mass spectrometry was utilized in this study. A total of 72 candidate proteins were selected. Subsequently, labeling of synthesized proteins obtained from N2a cells within 2hrs had first been used to test the method. I further applied this method to detect the de novo proteins in whole neurons and axons. From preliminary results, the local syntheses of 16 and 1 proteins in whole neurons and axons, respectively, were evaluated.
Overview:
Brewer, G.J., Torricelli, J.R., Evege, E.K., Price, P.J., 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567-576.
Campenot R.B. 1997. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519.
Chaudhury, A., Hussey, G.S., Ray, P.S., Jin, G., Fox, P.L., Howe, P.H., 2010. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nature Cell Biology 12, 286.
Chen, H.C. 2005. Boyden chamber assay. Methods Mol Biol, 294:15-22.
Chen, H.-H., Yu, H.-I., Chiang, W.-C., Lin, Y.-D., Shia, B.-C., Tarn, W.-Y., 2012. hnRNP Q Regulates Cdc42-Mediated Neuronal Morphogenesis. Molecular and Cellular Biology 32, 2224-2238.
Cheng, M.-Y., Ho, H.-H., Huang, T.-K., Chuang, C.-F., Chen, H.-Y., Chung, H.-W., Leong, W.-C., Yang, W.-C., Fu, C.-C., Hsu, Y.-H., Chang, Y.-C., 2017. A compartmentalized culture device for studying the axons of CNS neurons. Analytical Biochemistry 539, 11-21.
Dombert, B., Sivadasan, R., Simon, C.M., Jablonka, S., Sendtner, M., 2014. Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PloS one 9, e110846-e110846.
Gordon-Weeks, P.R., Fischer, I., 2000. MAP1B expression and microtubule stability in growing and regenerating axons. Microscopy Research and Technique 48, 63-74.
Grove, E.A., Tole, S., 1999. Patterning Events and Specification Signals in the Developing Hippocampus. Cerebral Cortex 9, 551-561.
Halstead, J.M., Lin, Y.Q., Durraine, L., Hamilton, R.S., Ball, G., Neely, G.G., Bellen, H.J., Davis, I., 2014. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse. Biology Open 3, 839-849.
Hengst, U., Deglincerti, A., Kim, H.J., Jeon, N.L., Jaffrey, S.R., 2009. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nature Cell Biology 11, 1024.
Hentze, M.W., Castello, A., Schwarzl, T., Preiss, T., 2018. A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology 19, 327.
Hieronymus, H., Silver, P.A., 2004. A systems view of mRNP biology. Genes Dev 18, 2845-2860.
Hsu, W.-L., Chung, H.-W., Wu, C.-Y., Wu, H.-I., Lee, Y.-T., Chen, E.-C., Fang, W., Chang, Y.-C., 2015. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. The Journal of Biological Chemistry 290, 20748-20760.
Kiebler, M.A., Bassell, G.J., 2006. Neuronal RNA granules: movers and makers. Neuron 51, 685-690.
Koeing, E. 2009. Cell biology of the axon: Springer.
Mili, S., Macara, I.G., 2009. RNA localization and polarity: from A(PC) to Z(BP). Trends Cell Biol 19, 156-164.
Rossoll, W., Jablonka, S., Andreassi, C., Kröning, A.-K., Karle, K., Monani, U.R., Sendtner, M., 2003. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. The Journal of cell biology 163, 801-812.
Rossoll, W., Kröning, A.-K., Ohndorf, U.-M., Steegborn, C., Jablonka, S., Sendtner, M., 2002. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Human Molecular Genetics 11, 93-105.
Schmitz, Y., Luccarelli, J., Kim, M., Wang, M., Sulzer, D., 2009. Glutamate controls growth rate and branching of dopaminergic axons. J Neurosci 29, 11973-11981.
Taylor, A.M., Berchtold, N.C., Perreau, V.M., Tu, C.H., Li Jeon, N., Cotman, C.W., 2009. Axonal mRNA in Uninjured and Regenerating Cortical Mammalian Axons. The Journal of Neuroscience 29, 4697-4707.
Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., Jeon, N.L., 2005. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2, 599-605.
Vitriol, E.A., Zheng, J.Q., 2012. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73, 1068-1081.
Welshhans, K., Bassell, G.J., 2011. Netrin-1-Induced Local β-Actin Synthesis and Growth Cone Guidance Requires Zipcode Binding Protein 1. The Journal of Neuroscience 31, 9800-9813.
Williams, K.R., McAninch, D.S., Stefanovic, S., Xing, L., Allen, M., Li, W., Feng, Y., Mihailescu, M.R., Bassell, G.J., 2016. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Molecular Biology of the Cell 27, 518-534.
Willis, D.E., van Niekerk, E.A., Sasaki, Y., Mesngon, M., Merianda, T.T., Williams, G.G., Kendall, M., Smith, D.S., Bassell, G.J., Twiss, J.L., 2007. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. The Journal of Cell Biology 178, 965-980.
Wu, H.I., Cheng, G.H., Wong, Y.Y., Lin, C.M., Fang, W., Chow, W.Y., Chang, Y.C., 2010. A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 10, 647-653.
Xing, L., Yao, X., Williams, K.R., Bassell, G.J., 2012. Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Molecular Biology of the Cell 23, 1500-1509.
Xu, Y., Wu, W., Han, Q., Wang, Y., Li, C., Zhang, P., Xu, H., 2019. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 9, 180239-180239.
Zivraj, K.H., Tung, Y.C.L., Piper, M., Gumy, L., Fawcett, J.W., Yeo, G.S.H., Holt, C.E., 2010. Subcellular Profiling Reveals Distinct and Developmentally Regulated Repertoire of Growth Cone mRNAs. The Journal of Neuroscience 30, 15464-15478.
Chapter I:
Balasanyan, V., Arnold, D.B., 2014. Actin and Myosin-Dependent Localization of mRNA to Dendrites. PLOS ONE 9, e92349
Bannai, H., Fukatsu, K., Mizutani, A., Natsume, T., Iemura, S.-i., Ikegami, T., Inoue, T., Mikoshiba, K., 2004. An RNA-interacting Protein, SYNCRIP (Heterogeneous Nuclear Ribonuclear Protein Q1/NSAP1) Is a Component of mRNA Granule Transported with Inositol 1,4,5-Trisphosphate Receptor Type 1 mRNA in Neuronal Dendrites. Journal of Biological Chemistry 279, 53427-53434
Bassell, G.J., Zhang, H., Byrd, A.L., Femino, A.M., Singer, R.H., Taneja, K.L., Lifshitz, L.M., Herman, I.M., Kosik, K.S., 1998. Sorting of β-Actin mRNA and Protein to Neurites and Growth Cones in Culture. The Journal of Neuroscience 18, 251-265
Bramham, C.R., Wells, D.G., 2007. Dendritic mRNA: transport, translation and function. Nature Reviews Neuroscience 8, 776
Brewer, G.J., Torricelli, J.R., Evege, E.K., Price, P.J., 1993. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567-576
Briese, M., Saal-Bauernschubert, L., Ji, C., Moradi, M., Ghanawi, H., Uhl, M., Appenzeller, S., Backofen, R., Sendtner, M., 2018. hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons. Proc Natl Acad Sci U S A 115, E2859-E2868
Chen, H.-H., Chang, J.-G., Lu, R.-M., Peng, T.-Y., Tarn, W.-Y., 2008. The RNA Binding Protein hnRNP Q Modulates the Utilization of Exon 7 in the Survival Motor Neuron 2 (SMN2) Gene. Molecular and Cellular Biology 28, 6929-6938
Chen, H.H., Yu, H.I., Chiang, W.C., Lin, Y.D., Shia, B.C., Tarn, W.Y., 2012. hnRNP Q regulates Cdc42-mediated neuronal morphogenesis. Mol Cell Biol 32, 2224-2238 Cheng, H.H., Huang, Z.H., Lin, W.H., Chow, W.Y., Chang, Y.C., 2009. Cold-induced exodus of postsynaptic proteins from dendritic spines. J Neurosci Res 87, 460-469
Chuang, C.-F., King, C.-E., Ho, B.-W., Chien, K.-Y., Chang, Y.-C., 2018. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. Journal of Proteome Research 17, 1953-1966
Cohen, J.H., Aubry, J.P., Jouvin, M.H., Wijdenes, J., Bancherau, J., Kazatchkine, M., Revillard, J.P., 1987. Enumeration of CR1 complement receptors on erythrocytes using a new method for detecting low density cell surface antigens by flow cytometry. J Immunol Methods 99, 53-58
Dieterich, D.C., Hodas, J.J.L., Gouzer, G., Shadrin, I.Y., Ngo, J.T., Triller, A., Tirrell, D.A., Schuman, E.M., 2010. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13, 897-905
Dombert, B., Sivadasan, R., Simon, C.M., Jablonka, S., Sendtner, M., 2014. Presynaptic Localization of Smn and hnRNP R in Axon Terminals of Embryonic and Postnatal Mouse Motoneurons. PLOS ONE 9, e110846
Dreyfuss, G., Kim, V.N., Kataoka, N., 2002. Messenger-RNA-binding proteins and the messages they carry. Nature Reviews Molecular Cell Biology 3, 195
Elvira, G., Wasiak, S., Blandford, V., Tong, X.K., Serrano, A., Fan, X., del Rayo Sanchez-Carbente, M., Servant, F., Bell, A.W., Boismenu, D., Lacaille, J.C., McPherson, P.S., DesGroseillers, L., Sossin, W.S., 2006. Characterization of an RNA granule from developing brain. Mol Cell Proteomics 5, 635-651
Geuens, T., Bouhy, D., Timmerman, V., 2016. The hnRNP family: insights into their role in health and disease. Human Genetics 135, 851-867
Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M., 2010. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal β-actin mRNA translocation in spinal motor neurons. Human Molecular Genetics 19, 1951-1966
Han, Siew P., Tang, Yue H., Smith, R., 2010. Functional diversity of the hnRNPs: past, present and perspectives. Biochemical Journal 430, 379-392
Hieronymus, H., Silver, P.A., 2004. A systems view of mRNP biology. Genes Dev 18, 2845-2860
Hornberg, H., Holt, C., 2013. RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 7, 81-89
Hsu, W.-L., Chung, H.-W., Wu, C.-Y., Wu, H.-I., Lee, Y.-T., Chen, E.-C., Fang, W., Chang, Y.-C., 2015. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. The Journal of Biological Chemistry 290, 20748-20760
Hsu, Y.H., Wu, H.I., Cheng, W.S., Chung, H.W., Wu, T.Y., Chang, Y.C., 2012. A chip-based method for studying the effects of exogenous proteins on neuronal axons. Anal Biochem 427, 1-9
Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience 24, 677-736
Jung, H., Yoon, B.C., Holt, C.E., 2012. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nature reviews. Neuroscience 13, 308-324
Kanai, Y., Dohmae, N., Hirokawa, N., 2004. Kinesin Transports RNA: Isolation and Characterization of an RNA-Transporting Granule. Neuron 43, 513-525
Kar, A.N., Lee, S.J., Twiss, J.L., 2018. Expanding axonal transcriptome brings new functions for axonally-synthesized proteins in health and disease. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 24, 111-129
Kiebler, M.A., Bassell, G.J., 2006. Neuronal RNA granules: movers and makers. Neuron 51, 685-690
Leal, G., Afonso, P.M., Duarte, C.B., 2014. Neuronal Activity Induces Synaptic Delivery of hnRNP A2/B1 by a BDNF-Dependent Mechanism in Cultured Hippocampal Neurons. PLOS ONE 9, e108175
Leal, G., Comprido, D., de Luca, P., Morais, E., Rodrigues, L., Mele, M., Santos, A.R., Costa, R.O., Pinto, M.J., Patil, S., Berentsen, B., Afonso, P., Carreto, L., Li, K.W., Pinheiro, P., Almeida, R.D., Santos, M.A.S., Bramham, C.R., Duarte, C.B., 2017. The RNA-Binding Protein hnRNP K Mediates the Effect of BDNF on Dendritic mRNA Metabolism and Regulates Synaptic NMDA Receptors in Hippocampal Neurons. eNeuro 4, ENEURO.0268-0217.2017
McDonald, J.H., Dunn, K.W., 2013. Statistical tests for measures of colocalization in biological microscopy. Journal of microscopy 252, 295-302
Mili, S., Macara, I.G., 2009. RNA localization and polarity: from A(PC) to Z(BP). Trends Cell Biol 19, 156-164
Mizutani, A., Fukuda, M., Ibata, K., Shiraishi, Y., Mikoshiba, K., 2000. SYNCRIP, a cytoplasmic counterpart of heterogeneous nuclear ribonucleoprotein R, interacts with ubiquitous synaptotagmin isoforms.
J Biol Chem 275, 9823-9831 Moore, M.J., Proudfoot, N.J., 2009. Pre-mRNA Processing Reaches Back to Transcription and Ahead to Translation. Cell 136, 688-700
Moradi, M., Sivadasan, R., Saal, L., Lüningschrör, P., Dombert, B., Rathod, R.J., Dieterich, D.C., Blum, R., Sendtner, M., 2017. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. The Journal of cell biology 216, 793-814
Mourelatos, Z., Abel, L., Yong, J., Kataoka, N., Dreyfuss, G., 2001. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20, 5443-5452
Park, H., Poo, M.-m., 2013. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14, 7-23
Rossoll, W., Jablonka, S., Andreassi, C., Kröning, A.-K., Karle, K., Monani, U.R., Sendtner, M., 2003. Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. The Journal of Cell Biology 163, 801-812
Rossoll, W., Kröning, A.-K., Ohndorf, U.-M., Steegborn, C., Jablonka, S., Sendtner, M., 2002. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Human Molecular Genetics 11, 93-105
Sahoo, P.K., Smith, D.S., Perrone-Bizzozero, N., Twiss, J.L., 2018. Axonal mRNA transport and translation at a glance. J Cell Sci 131, 1-8
Shiina, N., Shinkura, K., Tokunaga, M., 2005. A Novel RNA-Binding Protein in Neuronal RNA Granules: Regulatory Machinery for Local Translation. The Journal of Neuroscience 25, 4420-4434
Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., Nawa, H., 2004. Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites. The Journal of Neuroscience 24, 9760-9769
Taylor, A.M., Berchtold, N.C., Perreau, V.M., Tu, C.H., Li Jeon, N., Cotman, C.W., 2009. Axonal mRNA in Uninjured and Regenerating Cortical Mammalian Axons. The Journal of Neuroscience 29, 4697-4707
Turner-Bridger, B., Jakobs, M., Muresan, L., Wong, H.H.-W., Franze, K., Harris, W.A., Holt, C.E., 2018. Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proceedings of the National Academy of Sciences 41, E9697-E9706.
Vuppalanchi, D., Willis, D.E., Twiss, J.L., 2009. Regulation of mRNA Transport and Translation in Axons. Results Probl Cell Differ 48, 293-304.
Wang, Y.-Y., Wu, H.-I., Hsu, W.-L., Chung, H.-W., Yang, P.-H., Chang, Y.-C., Chow, W.-Y., 2014. In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons. Molecular and Cellular Neuroscience 61, 141-151
Wigington, C.P., Williams, K.R., Meers, M.P., Bassell, G.J., Corbett, A.H., 2014. Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions. Wiley Interdisciplinary Reviews: RNA 5, 601-622
Williams, K.R., McAninch, D.S., Stefanovic, S., Xing, L., Allen, M., Li, W., Feng, Y., Mihailescu, M.R., Bassell, G.J., 2016. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Molecular Biology of the Cell 27, 518-534
Willis, D.E., van Niekerk, E.A., Sasaki, Y., Mesngon, M., Merianda, T.T., Williams, G.G., Kendall, M., Smith, D.S., Bassell, G.J., Twiss, J.L., 2007. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. The Journal of Cell Biology 178, 965-980
Wong, H.H.-W., Lin, J.Q., Ströhl, F., Roque, C.G., Cioni, J.-M., Cagnetta, R., Turner-Bridger, B., Laine, R.F., Harris, W.A., Kaminski, C.F., Holt, C.E., 2017. RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo. Neuron 95, 852-868.e858
Wu, H.I., Cheng, G.H., Wong, Y.Y., Lin, C.M., Fang, W., Chow, W.Y., Chang, Y.C., 2010. A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab Chip 10, 647-653
Xing, L., Yao, X., Williams, K.R., Bassell, G.J., 2012. Negative regulation of RhoA translation and signaling by hnRNP-Q1 affects cellular morphogenesis. Molecular Biology of the Cell 23, 1500-1509
Zappulo, A., van den Bruck, D., Ciolli Mattioli, C., Franke, V., Imami, K., McShane, E., Moreno-Estelles, M., Calviello, L., Filipchyk, A., Peguero-Sanchez, E., Muller, T., Woehler, A., Birchmeier, C., Merino, E., Rajewsky, N., Ohler, U., Mazzoni, E.O., Selbach, M., Akalin, A., Chekulaeva, M., 2017. RNA localization is a key determinant of neurite-enriched proteome. Nat Commun 8, 583
Zivraj, K.H., Tung, Y.C.L., Piper, M., Gumy, L., Fawcett, J.W., Yeo, G.S.H., Holt, C.E., 2010. Subcellular Profiling Reveals Distinct and Developmentally Regulated Repertoire of Growth Cone mRNAs. The Journal of Neuroscience 30, 15464-15478
Chapter II:
Aebersold, R., Mann, M., 2003. Mass spectrometry-based proteomics. Nature 422, 198-207.
Anderson, L., Hunter, C.L., 2006. Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins. Molecular & Cellular Proteomics 5, 573-588.
Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B., 2007. Quantitative mass spectrometry in proteomics: a critical review. Analytical and Bioanalytical Chemistry 389, 1017-1031.
Boja, E.S., Rodriguez, H., 2012. Mass spectrometry-based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins. PROTEOMICS 12, 1093-1110.
Chuang, C.-F., King, C.-E., Ho, B.-W., Chien, K.-Y., Chang, Y.-C., 2018. Unbiased Proteomic Study of the Axons of Cultured Rat Cortical Neurons. J Proteome Res 17, 1953-1966.
Cohen, L.D., Zuchman, R., Sorokina, O., Müller, A., Dieterich, D.C., Armstrong, J.D., Ziv, T., Ziv, N.E., 2013. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance. PLOS ONE 8, e63191.
Deng, J., Erdjument-Bromage, H., Neubert, T.A., 2019. Quantitative Comparison of Proteomes Using SILAC. Current Protocols in Protein Science 95, e74.
Gallien, S., Duriez, E., Domon, B., 2011. Selected reaction monitoring applied to proteomics. Journal of Mass Spectrometry 46, 298-312.
Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J.R., Mann, M., 2010. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nature Methods 7, 383.
Hsu, W.-L., Chung, H.-W., Wu, C.-Y., Wu, H.-I., Lee, Y.-T., Chen, E.-C., Fang, W., Chang, Y.-C., 2015. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. J Biol Chem 290, 20748-20760.
Keshishian, H., Addona, T., Burgess, M., Kuhn, E., Carr, S.A., 2007. Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution. Molecular & Cellular Proteomics 6, 2212-2229.
Liao, L., Park, S.K., Xu, T., Vanderklish, P., Yates, J.R., 2008. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proceedings of the National Academy of Sciences 105, 15281-15286.
Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M., 2002. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics 1, 376-386.
Ong, S.-E., Mann, M., 2005. Mass spectrometry–based proteomics turns quantitative. Nature Chemical Biology 1, 252-262.
Picotti, P., Rinner, O., Stallmach, R., Dautel, F., Farrah, T., Domon, B., Wenschuh, H., Aebersold, R., 2009. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nature Methods 7, 43.
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M., 2011. Global quantification of mammalian gene expression control. Nature 473, 337.
Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V., Neubert, T.A., 2008. Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7, 1067-1076.
Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar, P., Anderle, M., Becker, C.H., 2003. Quantification of Proteins and Metabolites by Mass Spectrometry without Isotopic Labeling or Spiked Standards. Analytical Chemistry 75, 4818-4826.
Wang, Y.-Y., Wu, H.-I., Hsu, W.-L., Chung, H.-W., Yang, P.-H., Chang, Y.-C., Chow, W.-Y., 2014. In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons. Molecular and Cellular Neuroscience 61, 141-151.
Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., Humphery-Smith, I., 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. ELECTROPHORESIS 16, 1090-1094.
Wu, H.-I., Cheng, G.-H., Wong, Y.-Y., Lin, C.-M., Fang, W., Chow, W.-Y., Chang, Y.-C., 2010. A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab on a Chip 10, 647-653.
Wu, S.-L., Amato, H., Biringer, R., Choudhary, G., Shieh, P., Hancock, W.S., 2002. Targeted Proteomics of Low-Level Proteins in Human Plasma by LC/MSn: Using Human Growth Hormone as a Model System. J Proteome Res 1, 459-465.
General discussion and conclusion:
Anderson, L., Hunter, C.L., 2006. Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins. Molecular & Cellular Proteomics 5, 573-588.
Barde, Y.A., Edgar, D., Thoenen, H., 1982. Purification of a new neurotrophic factor from mammalian brain. EMBO J 1, 549-553.
Bowling, H., Bhattacharya, A., Zhang, G., Lebowitz, J.Z., Alam, D., Smith, P.T., Kirshenbaum, K., Neubert, T.A., Vogel, C., Chao, M.V., Klann, E., 2016. BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology 100, 76-89.
Chen, H.-H., Yu, H.-I., Chiang, W.-C., Lin, Y.-D., Shia, B.-C., Tarn, W.-Y., 2012. hnRNP Q Regulates Cdc42-Mediated Neuronal Morphogenesis. Molecular and Cellular Biology 32, 2224-2238.
Davies, A.M., Wright, E.M., 1995. Neurotrophic Factors: Neurotrophin autocrine loops. Current Biology 5, 723-726.
Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A., Schuman, E.M., 2006. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci U S A 103, 9482-9487.
García-Reyes, J.F., Hernando, M.D., Molina-Díaz, A., Fernández-Alba, A.R., 2007. Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC Trends in Analytical Chemistry 26, 828-841.
Genheden, M., Kenney, J.W., Johnston, H.E., Manousopoulou, A., Garbis, S.D., Proud, C.G., 2015. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1. J Neurosci 35, 972-984.
Geuens, T., Bouhy, D., Timmerman, V., 2016. The hnRNP family: insights into their role in health and disease. Human Genetics 135, 851-867.
Glenn, W.S., Stone, S.E., Ho, S.H., Sweredoski, M.J., Moradian, A., Hess, S., Bailey-Serres, J., Tirrell, D.A., 2017. Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue. Plant Physiol 173, 1543-1553.
Glinka, M., Herrmann, T., Funk, N., Havlicek, S., Rossoll, W., Winkler, C., Sendtner, M., 2010. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal β-actin mRNA translocation in spinal motor neurons. Human Molecular Genetics 19, 1951-1966.
Gomes, C., Merianda, T.T., Lee, S.J., Yoo, S., Twiss, J.L., 2014. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 74, 218-232.
Hüttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng, X., Bassell, G.J., Condeelis, J., Singer, R.H., 2005. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512-515.
Hodas, J.J.L., Nehring, A., Höche, N., Sweredoski, M.J., Pielot, R., Hess, S., Tirrell, D.A., Dieterich, D.C., Schuman, E.M., 2012. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). PROTEOMICS 12, 2464-2476.
Howden, A.J.M., Geoghegan, V., Katsch, K., Efstathiou, G., Bhushan, B., Boutureira, O., Thomas, B., Trudgian, D.C., Kessler, B.M., Dieterich, D.C., Davis, B.G., Acuto, O., 2013. QuaNCAT: quantitating proteome dynamics in primary cells. Nature methods 10, 343-346.
Hsu, W.-L., Chung, H.-W., Wu, C.-Y., Wu, H.-I., Lee, Y.-T., Chen, E.-C., Fang, W., Chang, Y.-C., 2015. Glutamate Stimulates Local Protein Synthesis in the Axons of Rat Cortical Neurons by Activating α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors and Metabotropic Glutamate Receptors. The Journal of Biological Chemistry 290, 20748-20760.
Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: Roles in Neuronal Development and Function. Annual review of neuroscience 24, 677-736.
Jønson, L., Vikesaa, J., Krogh, A., Nielsen, L.K., Hansen, T.v., Borup, R., Johnsen, A.H., Christiansen, J., Nielsen, F.C., 2007. Molecular Composition of IMP1 Ribonucleoprotein Granules. Molecular & Cellular Proteomics 6, 798-811.
Keshishian, H., Addona, T., Burgess, M., Kuhn, E., Carr, S.A., 2007. Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution. Molecular & Cellular Proteomics 6, 2212-2229.
Lacorte, S., Fernandez-Alba, A.R., 2006. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrometry Reviews 25, 866-880.
Leal, G., Afonso, P.M., Duarte, C.B., 2014. Neuronal Activity Induces Synaptic Delivery of hnRNP A2/B1 by a BDNF-Dependent Mechanism in Cultured Hippocampal Neurons. PLOS ONE 9, e108175.
Liu, Y., Gervasi, C., Szaro, B.G., 2008. A crucial role for hnRNP K in axon development in <em>Xenopus laevis</em>. Development 135, 3125.
Manadas, B., Santos, A.R., Szabadfi, K., Gomes, J.R., Garbis, S.D., Fountoulakis, M., Duarte, C.B., 2009. BDNF-Induced Changes in the Expression of the Translation Machinery in Hippocampal Neurons: Protein Levels and Dendritic mRNA. Journal of Proteome Research 8, 4536-4552.
McKay, C.S., Finn, M.G., 2014. Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem Biol 21, 1075-1101.
Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M., 2002. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics 1, 376-386.
Park, H., Poo, M.-m., 2013. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14, 7-23.
Picó, Y., Blasco, C., Font, G., 2004. Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: An overview. Mass Spectrometry Reviews 23, 45-85.
Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V., Neubert, T.A., 2008. Stable Isotopic Labeling by Amino Acids in Cultured Primary Neurons. Application to Brain-derived Neurotrophic Factor-dependent Phosphotyrosine-associated Signaling 7, 1067-1076.
Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K., Nawa, H., 2004. Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites. The Journal of Neuroscience 24, 9760-9769.
van Niekerk, E.A., Willis, D.E., Chang, J.H., Reumann, K., Heise, T., Twiss, J.L., 2007. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proceedings of the National Academy of Sciences of the United States of America 104, 12913-12918.
Williams, K.R., McAninch, D.S., Stefanovic, S., Xing, L., Allen, M., Li, W., Feng, Y., Mihailescu, M.R., Bassell, G.J., 2016. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Molecular Biology of the Cell 27, 518-534.
Yocum, A.K., Chinnaiyan, A.M., 2009. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8, 145-157.
Yoo, S., Kim, H.H., Kim, P., Donnelly, C.J., Kalinski, A.L., Vuppalanchi, D., Park, M., Lee, S.J., Merianda, T.T., Perrone-Bizzozero, N.I., Twiss, J.L., 2013. A HuD-ZBP1 ribonucleoprotein complex localizes GAP-43 mRNA into axons through its 3' untranslated region AU-rich regulatory element. J Neurochem 126, 792-804.
Zhang, G., Bowling, H., Hom, N., Kirshenbaum, K., Klann, E., Chao, M.V., Neubert, T.A., 2014. In-depth quantitative proteomic analysis of de novo protein synthesis induced by brain-derived neurotrophic factor. J Proteome Res 13, 5707-5714.