研究生: |
蔡佳谷 Chia-Ku Tsai |
---|---|
論文名稱: |
五氧化二鉭閘極介電層之金氧半元件特性及電漿充電效應研究 Characteristics and Plasma charge effects on MOSFET Devices with Ta2O5 Gate Dielectric |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 五氧化二鉭 、電漿充電效應 |
外文關鍵詞: | Ta2O5, Plasma charge effect |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
元件閘極氧化層日益變薄的趨勢是一直不斷的,但當氧化層厚度薄至25Å以下時,以熱成長的SiO2為氧化層的元件化因為直接穿遂效應而產生很大的漏電流,使整個元件的特性變差,因此尋找一種新的介電材料來替代原來的氧化層,是很重要的一個課提。
論文中選取的高介電係數材質為Ta2O5。我們知道在Ta2O5沈積過程中會產生一些缺陷,導致元件初始特性不佳、可靠性不良,所以需要界面前處理及沈積後退火處理來改善元件特性。文中發現在沈積Ta2O5前以爐管通入8000C NH3氣體5min且經由PDA N2O anneal 的元件初始特性有明顯的提升。但在經stress過後PDA N2O anneal 的元件可靠性特性就沒有比經由PDA O2 anneal 的元件來的好。
我們發現隨著天線比例的增加受電漿充電效應損傷的機會也越大,造成F-N stress可靠性也有明顯的衰退情形,另外,在PDA部分,我們發現O2 anneal 的元件,較容易隨著天線面積改變;也發現N2O anneal 的元件在經過stress後有較差的界面特性。由電荷分離分析可以知道,在經過電漿製程或是F-N stress過程中是因為有電子被陷在之前因為製程所產生的界面陷阱中,使得臨界電壓增大。在不同通道長度實驗結果可以發現當通道長度縮短時電漿傷害增加,這是因為所受到的電漿充電效應比例上來講較通道長度長的為大。
[1] C. Ho, “Gate Oxide Scaling Limits and Projection,” IEDM., pp. 319-322.1996
[2] C. C. Chen, C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin and M. S. Liang, “Temperature-Accelerated Dielectric Breakdown in Ultrathin Gate Oxides,” Appl. Phys. Lett., vol. 74, pp. 3708-3710, 1999.
[3] I. Asona et al, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High density DRAMs,” IEDM., pp. 755-758.1998
[4] M. Matsui et al, “Amorphous Silicon Thin-Film Transistors Employing Photo Processed Tantalum Oxide Films as Gate Insulators,” JJAP., vol. 29, pp. 62, 1990.
[5] J. L. Autra et al, “Fabrication and Characterization of Si-MOSFET’s with PECVD Amorphous Ta2O5 Gate Insulator,” IEEE Electron Devices Lett., vol. 18, pp.447, 1997.
[6] S. O. Kim et al, “Fabrication of n-Metal-Oxide Semiconductor Field Effect Transistor with Ta2O5 Gate Oxide Prepared by Plasma Enhanced Metal-organic Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, vol. 12, No. 5, pp. 3006, 1994.
[7] I. Asona et al, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High density DRAMs,” IEDM’., pp. 755-758.1998
[8] H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Robert, and D. L. Kwong, “Ultra Thin High Quality Ta2O5 Gate Dielectric Prepared by In-situ Rapid Thermal Processing,” IEDM, pp. 609-612.1998
[9] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roberts, and D. L. Kwong, ”High Quality Ta2O5 Gate Dielectrics with Tox,eq<10Å,” IEDM, pp. 141-144.1999
[10] 1999 ASM ALCVD Seminar,Hsin-Chu,NCTU Nov.1999.
[11] S.A. Campbell et al, “MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics “ IEEE Trans.Electron Device, ED-44, pp.104-109 1997
[12] B.He et al, “A 1.1 nm oxide equivalent gate insulator formed using TiO/sub 2/ on nitrided silicon “ IEDM Tech. Digest,pp.1038-1040 .1998
[13] C.Hobbs et al,”Sub-quarter micron CMOS process for TiN-gate MOSFETS with TiO/sub2/ gate dielectric formed by titanium oxidation”Symp.VLSI Technol.,p.133-134 1999
[14] B. Y. Kim, H. F. Luan and D. L. Kwong, “Ultra Thin (<3nm) High Quality Nitride/Oxide Stack Gate Dielectrics Fabricated by In-Situ Rapid Thermal Processing,” IEDM., pp. 463-466.1997
[15] S. C. Song, H. F. Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Allen, “Ultra Thin (<20Å) CVD Si3N4 Gate Dielectric for Deep-Sub-Micron CMOS Devices,” IEDM., pp. 373-376.1998
[16] K. W. Kwon, C. S. Kang, S. O. Park, H. O. Kang, and S. T. Ahn, “Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM,” IEEE Trans. Electron Device, vol. 43, No. 6, pp. 919-923, 1996.
[17] S. C. Sun and T. F. Chen, “Leakage Current Reduction in Chemical- Vapor Deposition Ta2O5 Films by Rapid Thermal Annealing in N2O,” IEEE Electron Device Lett., vol. 17, No. 7, pp. 355-357, 1996.
[18] S. C. Sun and T. F. Chen, “A New Post-Deposition Annealing Method Using Furnace N2O for Reduction of Leakage Current of CVD Ta2O5 Storage Capacitors,” IEDM, pp.687-690.1996
[19] Yuichi Matsui, Kazuyoshi Torii, Misuzu Hirayama, Yoshihisa Fujisaki, Shimpei Iijima, and Yuzuru Ohji, “Reduction of Current Leakage in Chemical-Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing,” IEEE Electron Devices Lett., vol. 17, No. 9, pp. 431-433, 1996.
[20] The National Technology Roadmap for Semiconductors Technology Needs, 1997 edition, Semiconductor Industry Association.1997
[21] Yi-Lee Huang, Study of Ta2O5 as Ultra-thin Stacked Gate Material and Leakage Current Reduction by Plasma Annealing, 1997.
[22] W.S.Lau,k.,P.W.Qian,N.P.Sandler ,K.A.Mckinley and P.K.Chu,”Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors”.J.Appl.Phys.,36,66, 1997b
[23] R.L. Angle and H.E. Tally,”Electrical and charge storage characteristics of the tantalum oxide-silicon dioxide devices”,IEEE Trans.Electron Devices,ED-25,1277.1978
[24] S. Banerjee B. Shen,I.Chen,J.Bohiman,G.Brown and R.Doering”Conduction Mechanisms in Sputtered Ta2O5 on Si with an Interfacial SiO2 Layer”,J.Appl.Phys.,65,1140,1989
[25] F.C. Chiu,J.J Wang, Y.M.Lee and S.C. Wu,”Leakage current in amorphous Ta2O5 thin films”,J.Appl.Phys.,81,6911,1997
[26] S. Ezhilvalavan and T.Y.Tseng,”Conduction mechanisms in amorphous and crystalline Ta2O5 thin films”, J. Appl.Phys.,83(9),4797,1998
[27] H.Zhang,R. Solanki,B.Roberds,G Bai and I. Banerjee,” High permittivity thin film nanolaminates”,J.Appl.Phys.,87,1921,2000
[28] G.Q. lo,D.L Kwong and S.Lee,”Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films”, App. Phys. Lett., 60(26), 3286, 1992.
[29] S. Zaima, T. Furuta, Y. Koide and Y. Yasuda, “Conduction mechanism of leakage current in Ta2O5 films on Si prepared by LPCVD”, J. Electrochem. Soc., 137, 2876, 1990a.
[30] A.Bayoumi,"Scalability of Plasma Damage with Gate Oxide ThicknessŖth International Symposium on Plasma Process-Induced Damage, p.11, 1997
[31] D.Park," Plasma Charge Damage on Ultrathin Gate OxideŖth International Symposium on Plasma Process-Induced Damage, p.15, 1997
[32] K.P.Cheung, " Is Surface Potential Measurement a Useful Charge Damage Measurement Methodŗth International Symposium on Plasma Process-Induced Damage, p.18, 1998
[33] C. Gabriel, "How Plasma Etching Damages Thin Gate Oxide"Solid State Tech. ,35, p.81 , 1992
[34] C.T.Gabriel, "Gate Oxide Damage from Polysilicon Etching"J.Vac.Sci.Tech.B, 9 , p370 , 1991
[35] P.K.Aum, "Controlling Plasma Charge Damage in Advanced Semiconductor Manufacturing-Challenge of Small Feature Size Device,Large Chip Size,and Large Wafer Size" IEEE ED, 45, p.722, 1998.
[36] H.Shin , " Thin Oxide Damage by Plasma Etching and Ashing Processes " IEEE IRPS p.37, 1992.
[37] C.H.Chien"The Role of Resist for Ultrathin Gate Oxide Degradation During O2 Plasma Ashing"IEEE EDL,18, p.203, 1997
[38] S.A.Bell, "Radiation Damage to Thermal Silicon Dioxide Film in Radio Frequency and microwave Downstream Photoresister Stripping System" J.Electrochemical Society,139, p.29.4,1992.
[39] S.Fang,S.Murakawa,and J.P.McVittie, IEDM Tech.Dig. , p61 , 1992.
[40] H.Shin , " Thin Gate Oxide Damage Due to Plasma Processes " Semicon.Sci.Technol.11, p.463, 1996.
[41] J.P.McVittie,"Process Charging in ULSI:Mechanisms,Impact and Solutions" IEDM , p.433, 1997.
[42] K.P.Cheung," Plasma-Charge Damage:A Physical Model" J.Appl.Phys.Vol.75, p.4415, 1994
[43] H.Shin, "Dependence of Plasma-induced Oxide Charging Current on Al Antenna Geometry"IEEE EDL,13, p.600, 1992
[44] S.Krishnan,"Antenna Device Reliability for ULSI Processing" IEDM ,1998.
[45] Paul K.Aum et al,”Controlling Plasma Charge Damage in Advanced Semiconductor Manufacturing-Challenge of Small Feature Size Device,Large chip size ,and Large wafer size”IEEE ED Vol.45,NO.3.1998
[46] J.P.Mcvittie,”Plasma charging Damage:An Overview”Internal Symposium on PPID,P7-10 1996
[47] SILICON PROCESS FOR THE VLSI ERA VOLUME 3 Fig7-63
[48] Wendy Lin et.al,”Charging Damages to Gate oxides in a Helicon O2 Plasma”Jpn.J.Appl.Phys.Vol.36 P7362-7366 1997