簡易檢索 / 詳目顯示

研究生: 蔡佳谷
Chia-Ku Tsai
論文名稱: 五氧化二鉭閘極介電層之金氧半元件特性及電漿充電效應研究
Characteristics and Plasma charge effects on MOSFET Devices with Ta2O5 Gate Dielectric
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 107
中文關鍵詞: 五氧化二鉭電漿充電效應
外文關鍵詞: Ta2O5, Plasma charge effect
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 元件閘極氧化層日益變薄的趨勢是一直不斷的,但當氧化層厚度薄至25Å以下時,以熱成長的SiO2為氧化層的元件化因為直接穿遂效應而產生很大的漏電流,使整個元件的特性變差,因此尋找一種新的介電材料來替代原來的氧化層,是很重要的一個課提。
    論文中選取的高介電係數材質為Ta2O5。我們知道在Ta2O5沈積過程中會產生一些缺陷,導致元件初始特性不佳、可靠性不良,所以需要界面前處理及沈積後退火處理來改善元件特性。文中發現在沈積Ta2O5前以爐管通入8000C NH3氣體5min且經由PDA N2O anneal 的元件初始特性有明顯的提升。但在經stress過後PDA N2O anneal 的元件可靠性特性就沒有比經由PDA O2 anneal 的元件來的好。

    我們發現隨著天線比例的增加受電漿充電效應損傷的機會也越大,造成F-N stress可靠性也有明顯的衰退情形,另外,在PDA部分,我們發現O2 anneal 的元件,較容易隨著天線面積改變;也發現N2O anneal 的元件在經過stress後有較差的界面特性。由電荷分離分析可以知道,在經過電漿製程或是F-N stress過程中是因為有電子被陷在之前因為製程所產生的界面陷阱中,使得臨界電壓增大。在不同通道長度實驗結果可以發現當通道長度縮短時電漿傷害增加,這是因為所受到的電漿充電效應比例上來講較通道長度長的為大。


    總目錄 摘要….……………. I 致謝……………. …. II 總目錄…………………….…. Ⅲ 圖目錄……………..….…… Ⅴ 表目錄…………………….. Ⅶ 第一章緒論 1.1 前言 1.2 為何需要高介電係數材料作為閘極介電層 1.3 高介電係數材料的選擇 1.4 Ta2O5薄膜的應用概況 1.4.1 氧化鉭(Tantalum Pentoxide,Ta2O5)的選擇 1.5 論文研究方向 第二章元件製程與量測 2.1 電晶體佈局之設計 2.2 測試元件的製程 2.3 電性量測 第三章以不同快速熱處理搭配沈積後退火處理改善Ta2O5閘極介電層特性之研究 3.1 研究動機及方法 3.2 測試元件製程與量測 3.2.1 元件製程 3.2.2 元件量測 3.3 實驗結果與討論. 3.3.1 介電係數及緩衝層厚度的比較 3.3.2 平帶電壓(Flat-Band Voltage)的比較 3.3.3 漏電流的特性(Gate Leakage Current Characteristic) 3.3.4 崩潰電場 3.3.5 可靠性特性(stress後之△Vfb)和SILC 3.4 結論 第四章Ta2O5閘極介電層電晶體特性與電漿充電效應探討 4.1 研究緣由與目的 4.1.1 研究緣由 4.1.2 研究目的 4.2 電漿充電效應之機制 4.3 測試元件製程 4.4 實驗結果與討論 4.4.1 MOSFET的可靠性特性 4.4.2 不同PDA與電漿充電效應之相關性 4.4.3 天線效應與電漿充電效應之相關性 4.4.4 以電荷分離方法分析電漿充電效應 4.4.5 MOSFET 通道長度與電漿充電效應之相關性 4.5 結論 第五章結論 5.1 結論 5.2 未來工作與建議 參考文獻

    [1] C. Ho, “Gate Oxide Scaling Limits and Projection,” IEDM., pp. 319-322.1996
    [2] C. C. Chen, C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin and M. S. Liang, “Temperature-Accelerated Dielectric Breakdown in Ultrathin Gate Oxides,” Appl. Phys. Lett., vol. 74, pp. 3708-3710, 1999.
    [3] I. Asona et al, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High density DRAMs,” IEDM., pp. 755-758.1998
    [4] M. Matsui et al, “Amorphous Silicon Thin-Film Transistors Employing Photo Processed Tantalum Oxide Films as Gate Insulators,” JJAP., vol. 29, pp. 62, 1990.
    [5] J. L. Autra et al, “Fabrication and Characterization of Si-MOSFET’s with PECVD Amorphous Ta2O5 Gate Insulator,” IEEE Electron Devices Lett., vol. 18, pp.447, 1997.
    [6] S. O. Kim et al, “Fabrication of n-Metal-Oxide Semiconductor Field Effect Transistor with Ta2O5 Gate Oxide Prepared by Plasma Enhanced Metal-organic Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, vol. 12, No. 5, pp. 3006, 1994.
    [7] I. Asona et al, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High density DRAMs,” IEDM’., pp. 755-758.1998
    [8] H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Robert, and D. L. Kwong, “Ultra Thin High Quality Ta2O5 Gate Dielectric Prepared by In-situ Rapid Thermal Processing,” IEDM, pp. 609-612.1998
    [9] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roberts, and D. L. Kwong, ”High Quality Ta2O5 Gate Dielectrics with Tox,eq<10Å,” IEDM, pp. 141-144.1999
    [10] 1999 ASM ALCVD Seminar,Hsin-Chu,NCTU Nov.1999.
    [11] S.A. Campbell et al, “MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics “ IEEE Trans.Electron Device, ED-44, pp.104-109 1997
    [12] B.He et al, “A 1.1 nm oxide equivalent gate insulator formed using TiO/sub 2/ on nitrided silicon “ IEDM Tech. Digest,pp.1038-1040 .1998
    [13] C.Hobbs et al,”Sub-quarter micron CMOS process for TiN-gate MOSFETS with TiO/sub2/ gate dielectric formed by titanium oxidation”Symp.VLSI Technol.,p.133-134 1999
    [14] B. Y. Kim, H. F. Luan and D. L. Kwong, “Ultra Thin (<3nm) High Quality Nitride/Oxide Stack Gate Dielectrics Fabricated by In-Situ Rapid Thermal Processing,” IEDM., pp. 463-466.1997
    [15] S. C. Song, H. F. Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Allen, “Ultra Thin (<20Å) CVD Si3N4 Gate Dielectric for Deep-Sub-Micron CMOS Devices,” IEDM., pp. 373-376.1998
    [16] K. W. Kwon, C. S. Kang, S. O. Park, H. O. Kang, and S. T. Ahn, “Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM,” IEEE Trans. Electron Device, vol. 43, No. 6, pp. 919-923, 1996.
    [17] S. C. Sun and T. F. Chen, “Leakage Current Reduction in Chemical- Vapor Deposition Ta2O5 Films by Rapid Thermal Annealing in N2O,” IEEE Electron Device Lett., vol. 17, No. 7, pp. 355-357, 1996.
    [18] S. C. Sun and T. F. Chen, “A New Post-Deposition Annealing Method Using Furnace N2O for Reduction of Leakage Current of CVD Ta2O5 Storage Capacitors,” IEDM, pp.687-690.1996
    [19] Yuichi Matsui, Kazuyoshi Torii, Misuzu Hirayama, Yoshihisa Fujisaki, Shimpei Iijima, and Yuzuru Ohji, “Reduction of Current Leakage in Chemical-Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing,” IEEE Electron Devices Lett., vol. 17, No. 9, pp. 431-433, 1996.
    [20] The National Technology Roadmap for Semiconductors Technology Needs, 1997 edition, Semiconductor Industry Association.1997
    [21] Yi-Lee Huang, Study of Ta2O5 as Ultra-thin Stacked Gate Material and Leakage Current Reduction by Plasma Annealing, 1997.
    [22] W.S.Lau,k.,P.W.Qian,N.P.Sandler ,K.A.Mckinley and P.K.Chu,”Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors”.J.Appl.Phys.,36,66, 1997b
    [23] R.L. Angle and H.E. Tally,”Electrical and charge storage characteristics of the tantalum oxide-silicon dioxide devices”,IEEE Trans.Electron Devices,ED-25,1277.1978
    [24] S. Banerjee B. Shen,I.Chen,J.Bohiman,G.Brown and R.Doering”Conduction Mechanisms in Sputtered Ta2O5 on Si with an Interfacial SiO2 Layer”,J.Appl.Phys.,65,1140,1989
    [25] F.C. Chiu,J.J Wang, Y.M.Lee and S.C. Wu,”Leakage current in amorphous Ta2O5 thin films”,J.Appl.Phys.,81,6911,1997
    [26] S. Ezhilvalavan and T.Y.Tseng,”Conduction mechanisms in amorphous and crystalline Ta2O5 thin films”, J. Appl.Phys.,83(9),4797,1998
    [27] H.Zhang,R. Solanki,B.Roberds,G Bai and I. Banerjee,” High permittivity thin film nanolaminates”,J.Appl.Phys.,87,1921,2000
    [28] G.Q. lo,D.L Kwong and S.Lee,”Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films”, App. Phys. Lett., 60(26), 3286, 1992.
    [29] S. Zaima, T. Furuta, Y. Koide and Y. Yasuda, “Conduction mechanism of leakage current in Ta2O5 films on Si prepared by LPCVD”, J. Electrochem. Soc., 137, 2876, 1990a.
    [30] A.Bayoumi,"Scalability of Plasma Damage with Gate Oxide ThicknessŖth International Symposium on Plasma Process-Induced Damage, p.11, 1997
    [31] D.Park," Plasma Charge Damage on Ultrathin Gate OxideŖth International Symposium on Plasma Process-Induced Damage, p.15, 1997
    [32] K.P.Cheung, " Is Surface Potential Measurement a Useful Charge Damage Measurement Methodŗth International Symposium on Plasma Process-Induced Damage, p.18, 1998
    [33] C. Gabriel, "How Plasma Etching Damages Thin Gate Oxide"Solid State Tech. ,35, p.81 , 1992
    [34] C.T.Gabriel, "Gate Oxide Damage from Polysilicon Etching"J.Vac.Sci.Tech.B, 9 , p370 , 1991
    [35] P.K.Aum, "Controlling Plasma Charge Damage in Advanced Semiconductor Manufacturing-Challenge of Small Feature Size Device,Large Chip Size,and Large Wafer Size" IEEE ED, 45, p.722, 1998.
    [36] H.Shin , " Thin Oxide Damage by Plasma Etching and Ashing Processes " IEEE IRPS p.37, 1992.
    [37] C.H.Chien"The Role of Resist for Ultrathin Gate Oxide Degradation During O2 Plasma Ashing"IEEE EDL,18, p.203, 1997
    [38] S.A.Bell, "Radiation Damage to Thermal Silicon Dioxide Film in Radio Frequency and microwave Downstream Photoresister Stripping System" J.Electrochemical Society,139, p.29.4,1992.
    [39] S.Fang,S.Murakawa,and J.P.McVittie, IEDM Tech.Dig. , p61 , 1992.
    [40] H.Shin , " Thin Gate Oxide Damage Due to Plasma Processes " Semicon.Sci.Technol.11, p.463, 1996.
    [41] J.P.McVittie,"Process Charging in ULSI:Mechanisms,Impact and Solutions" IEDM , p.433, 1997.
    [42] K.P.Cheung," Plasma-Charge Damage:A Physical Model" J.Appl.Phys.Vol.75, p.4415, 1994
    [43] H.Shin, "Dependence of Plasma-induced Oxide Charging Current on Al Antenna Geometry"IEEE EDL,13, p.600, 1992
    [44] S.Krishnan,"Antenna Device Reliability for ULSI Processing" IEDM ,1998.
    [45] Paul K.Aum et al,”Controlling Plasma Charge Damage in Advanced Semiconductor Manufacturing-Challenge of Small Feature Size Device,Large chip size ,and Large wafer size”IEEE ED Vol.45,NO.3.1998
    [46] J.P.Mcvittie,”Plasma charging Damage:An Overview”Internal Symposium on PPID,P7-10 1996
    [47] SILICON PROCESS FOR THE VLSI ERA VOLUME 3 Fig7-63
    [48] Wendy Lin et.al,”Charging Damages to Gate oxides in a Helicon O2 Plasma”Jpn.J.Appl.Phys.Vol.36 P7362-7366 1997

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE