研究生: |
魏淳邠 |
---|---|
論文名稱: |
鋯酸鉛鋇((Pb,Ba)ZrO3)鐵電材料摻雜鈦元素之電性研究 |
指導教授: | 吳振名 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 鋯鈦酸鉛鋇 、調變電性 、化學液相沉積法 、散逸因子 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用粉末乾壓法製作鋯鈦酸鉛鋇塊材(Pb5Ba5Zr1-xTixO3)以及化學液相沉積法方式在Pt/Ti/SiO2/Si基板上鍍製薄膜。本文主要目的在探討氧化鈦對鋯酸鉛鋇陶瓷材料調變電性影響,成份選擇在損失較低的順電區,並且逼近調變力較高的鐵電區和順電區轉換交界。塊材部份所選擇的成分為x=0、0.1、0.2、0.3、0.4及0.5,探討各不同成分對電性的影響,由結果得知塊材之介電常數和散逸因子隨著鈦含量增加而增加,在1MHz的頻率量測下x=0.1及0.2的塊材擁有較低的損耗,分別為0.0017及0.0022,在0.1GHz下仍能表現出低損耗狀況,分別為0.02147及0.01744。由於塊材中x=0.1及0.2的優異表現,因此即選擇此兩成份來鍍製薄膜,並且加上x=0成份來做比較。薄膜部分,介電常數隨著鈦含量增加而提升,散逸因子約落在0.01至0.03間,而熱處理溫度提高也同時提高薄膜的介電常數及調變值。在x=0.2,熱處理溫度6500C條件下有優異的電性表現,其介電常數約60,在外加電場約380kV/cm下其散逸因子為0.0117,FOM值有最佳的26.04,在較低的溫度即可達到最佳的電性表現,顯示在鋯酸鉛鋇的材料中加入鈦原素能增進鋯酸鉛鋇之調變電性.
1. M. W. Cole, P. C. Joshi, and M. H. Ervin, “La Doped Ba1-xSrxTiO3 Thin Films for Tunable Device Applications”J. Appl. Phys. 89, 6336(2001)
2. Y. A. Jeon, T. S. Seo, and S. G. Yoon, “Effect of Ni Doping on Improvement of the Tunability and Dielectric Loss of Ba0.5Sr0.5TiO3”. Jpn. J. Appl. Phys. 40, 6496(2001)
3. X. Zhu, W. Peng, J. miao, and D. Zheng, “Fabrication and Characterization of Tunable Dielectric Ba0.5Sr0.5TiO3 Thin Films by Pulsed Laser Deposition”. Mater. Lett. 58, 2045(2004)
4. C. Wang, B. L. Cheng, S.Y. Wang, H. B. Lu, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, “Improved Dielectric properties and Tunability of Multilayered Thin Films of (Ba0.8Sr0.2)(Ti1-xZrx)O3”. Appl. Phys. Lett. 84, 765(2004)
5. M. W. Cole, W. D. Nothwang, C. Hubbard, and M. Ervin, “Low Dielectric Loss and Enhanced Tunability of Ba0.6Sr0.4TiO3 Based Thin Films via Material Compositional Design and Optimized Film Processing Methods”. J. Appl. Phys. 93, 9218(2003)
6. S. S. Toncich, “Potential Impact of Ferroelectric Technology For PCS and Cellular Communications”. Integrated Ferroelectrics. 28, 37(2000)
7. M. H. Wu, and J. M. Wu, “Lead barium zirconate perovskite films for electrically tunable applications”. Appl. Phys. Lett, 022909(2005).
8. Y. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, (1991)
9. A. J. Moulson, and J. M. Herbert, “Electroceramics”, Chapman and Hall, (1990)
10. G. H. Haerting, “Ferroelectric Thin film for Electronic Applications”. J. Vac. Sci. Tech. 9, 414(1991)
11. L. M. Sheppard, “Advances in Processing of ferroelectric Thin Films”. Ceram. Bull. 71, 85(1992)
12. M. Sayer and K. Sreenivas, “Ceramic Thin films: Fabrication and Applications”. Science 247, 1056(199)
13. G. H. Yi and M. Sayer, “Sol-Gel Processing of Complex Oxide-Films”. Ceram. Bull. 70, 1173(1990)
14. J. F. Scott, C. A. P. de Araujo. L. D. MzMillan, H. Yoshimori, H. Watanbe, T. Mihara, M. Azuma. T. Ueda, D. Ueda, and G. Kano, ”Ferroelectric Thin Films in Integrated Microelectronic Devices”. Ferroelecrics, 133, 47(1992)
15. K. Sweetser, “Infrared Imaging with Ferroelectrics”. Integrated Ferroelectrics 17, 349(1997)
16. O. Auciello and R. Ramesh, Mater, “Electroceramic Thin Films Part Ⅰ: Processing”. Res. Bull. 20, 21(1996)
17. A. T. Findikoglu, Q. X. Jia, D. W. Reagor, and X. D. Wu, “Tunable Microwave Mixing in Nonlinear Dielectric Thin Films of SrTiO3 and Sr0.5Ba0.5TiO3”.Electronics Letters, 31, 1814(1995)
18. H. J. Chung and S. I. Woo, “Electrical characteristics of (Pb,Sr)TiO3 thin films for ultra-large scale-integrated dynamic random access memory capacitors prepared by liquid-source misted chemical deposition”. J. Vac. Sci. Technol. B, 19, 275(2001)
19. S. Hyun and K. Char, ”Effects of strain on the dielectric properties of tunable dielectric SrTiO3 thin films” Appl. Phys. Lett, 79, 254(2001)
20. J. Zhai, X Yao, L. Zhang, and B. Shen, “Dielectric nonlinear characteristics of Ba(Zr0.35Ti0.65)O3 thin films grown by a sol-gel process”. Appl. Phys. Lett, 84, 3136(2004).
21. C. R. Cho, J. H. Koh, and A. Grishin, “Background oxygen effects on pulsed laser deposited Na0.5K0.5NbO3 films: From superparaelectric state to ferroelectricity”. Appl. Phys. Lett, 76, 1761(2000).
22. J. Lu, and S. Stemmer, “Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering”. Appl. Phys. Lett. 83, 2411(2003)
23. Phase Diagram for Ceramics, Fig. 862.
24. G. Shirane, and S. Hoshino, “X-ray Study of Phase Transition in PbZrO3 Containing Barium or Strontium”, Anta Cryat. 7, 203(1954).
25. Y. M. Chiang, D. Birnie, and W. D. Kingery, “Physical Ceramics”. Wiley, (1996).
26. S. Roberts, “Dielectric properties of Lead Zirconate and Barium-Lead zirconate”. J. Am. Ceram. Soc. 33, 63(1950).
27. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric Materials for Microwave Tunable Applications”. Journal of Electroceramics. 11, 5(2003).