研究生: |
陳怡靜 Chen, Yi-Jing |
---|---|
論文名稱: |
活性碳應用於電容去離子之效能提升 Activated Carbon-based Capacitive Deionization Systems with an Improved Efficiency |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
張家欽
陳彥旭 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 電容去離子 、活性碳 、法拉第反應 、電位窗 |
外文關鍵詞: | Capacitive deionization, Activated carbon, Faradaic reactions, Potential window |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電容去離子系統是一項可解決傳統脫鹽技術之處理程序複雜且能量損耗大的去離子技術。電容去離子技術是透過活性碳電容器於水相電解液的電雙層電容特性,使活性碳電極在充、放電過程中具備可逆的吸、脫附離子能力。然而在實際的電容去離子系統中,除了非法拉第反應外,仍可能產生多項法拉第反應,造成整體系統的效能降低。相較於傳統作法偏向以低操作電壓1.2 V的方式避免法拉第反應的發生,本研究將藉由成本低的活性碳材料探討電容去離子系統的最適化電位窗條件。
本論文第一部分主要藉由三極式電化學反應系統了解活性碳(ACS679)於濃度8 mM氯化鈉水溶液下的電化學性質。首先,量測其開環路電壓為0.05 V (vs. Ag/AgCl)及最大化的電位窗範圍為-1.15 V ~ 0.85 V (vs. Ag/AgCl);並以電量平衡概念計算出正/負極重量比為4.6:1所組裝的活性碳電容器,以定電壓充電-放電方法及監控系統驗證正/負極電位範圍,在施加電壓2 V、放電電壓0 V且18圈連續充放電實驗結果得知平均鹽類吸附容量為10.52 mg g-1、庫倫效率為48.8 %、能量損耗為197.7 kJ mol-1。為了要進一步提升庫倫效率,降低不必要的損耗,因此必須了解實際系統中發生的法拉第反應,故以旋轉環-盤電極量測氧氣還原反應電位為-0.4 V (vs. Ag/AgCl),且在-0.57 V (vs. Ag/AgCl)時有一半機率會產生四個電子轉移的氧氣還原反應。
第二部分為找出活性碳的最適化電位窗範圍。藉由定電壓持續三分鐘遞增法,發現不同的正/負極重量比在不同的電壓下有各自最佳的鹽類吸附容量。接著,藉由三極式電化學系統中的定電流充放電法,找出活性碳在充電與放電時間比例趨近於1.12的電位窗範圍為-0.6 V ~ 0.8 V (vs. Ag/AgCl)。藉由電量平衡公式計算出兩極的重量比為1:1.4,施加電壓1.4 V應用於電容去離子系統,其平均鹽類吸附容量為11.86 mg g-1、庫倫效率為62 %、能量損耗為108.8 kJ mol-1。相較之下,施加電壓減少卻得到更高的鹽類吸附容量、庫倫效率以及較低的能量損耗。
Common electrode materials in capacitive deionization (CDI) system are activated carbons (ACs) with the advantages of low cost and high specific surface area, which are suitable for adsorbing/desorbing ions reversibly. However, there possibly exists several Faradaic reactions in the CDI systems under the real operation conditions. The higher voltage is applied, the more faradaic reactions occurs, resulting in the poor charge and energy efficiencies, but a low cell voltage of a CDI system usually leads to a low deionization capacity. Accordingly, the most important thing is to find a suitable potential window for the electrode materials with high charge and energy efficiencies.
The first part of this thesis is to identify the electrochemical properties of the ACS679-coated electrode by a three-electrode system. The open circuit potential is 0.05 V (vs. Ag/AgCl) with a potential window between -1.15 V ~ 0.85 V (vs. Ag/AgCl) without significant water decomposition. The mass ratio of the negative to positive electrodes on the basis of the charge balance methodology is 4.6:1, which shows an average salt adsorption capacity of 10.52 mg/g under a charge efficiency of 48.8 % and energy consumption of 197.7 kJ/mol at 2.0 V. Furthermore, the oxygen reduction reaction (ORR) for the AC-coated electrode in the 8 mM NaCl solution was detected by the rotating ring-disk electrode voltammetry, which started to significantly occur at -0.4 V (vs. Ag/AgCl). The methodology for varying the mass ratio of positive to negative electrodes, such as: 1:1 and 4.6:1, are systematically compared by monitoring the variations in pH and hydrogen peroxide concentration in the 8 mM NaCl solution to confirm the potential reactions, such as the oxygen evolution reaction (OER) and ORR.
The second part of this thesis is to find the optimal potential window for AC-coated electrodes in the CDI system. Here, we use the three-electrode system to find the optimal potential window, -0.6 V ~ 0.8 V (vs. Ag/AgCl), for the CDI system with the AC-coated electrodes by means of the galvanostatic charge-discharge curves when the charge time/discharge time ratio is approximately equal to 1.12. The mass ratio according to the charge balance is 1:1.4, which shows a higher salt removal capacity of 11.86 mg/g, a higher charge efficiency of 62 % and a lower energy consumption of 108.8 kJ/mol in comparison of the CDI system with the positive to negative electrode ratio of 4.6:1 at the largest cell voltage of 2.0 V.
1. 胡啟章,電化學原理與方法,2002,五南圖書出版股份有限公司。
2. Allen J. Bard, Larry R. Faulkner, Electrochemical Methods: Fundamentals and applications, 2nd, 2001, John Wiley & Sons Inc.
3. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science 58 (2013) 1388-1442.
4. John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, 3rd, 2004, John Wiley & Sons, Inc.
5. S. Nomoto, H. Nakata, K.Yoshioka, A.Yoshida, H.Yoneda, Advanced capacitors and their application, Journal of Power Sources 97-98 (2001) 807-811.
6. Tzu-Ho Wu, Chun-Tsung Hsu, Chi-Chang Hu, Laurence J. Hardwick, Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors, Journal of Power Sources 242 (2013) 289-298.
7. R. Kőtz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta 45 (2000) 2483-2498.
8. Laurent Pilon, Hainan Wang, Anna d’Entremont, Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors, Journal of The Electrochemical Society 162 (2015) A5158-A5178.
9. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environmental Science 8 (2015) 2296-2319.
10. P. M. Biesheuvel, Yeqing Fu, Martin Z. Bazant, Diffuse charge and Faradaic reactions in porous electrodes, Physical Review E 83 (2011) 061507.
11. Catherine Charcosset, A review of membrane processes and renewable energies for desalination, Desalination 245 (2009) 214-231.
12. W. D. Williams, J. E. Sherwood, Definition and measurement of salinity in salt lakes, International Journal of Salt Lake Research 3 (1994) 55-63.
13. John W. Blair, George W. Murphy, Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area, Advances in Chemistry 27 (1960) 206-223.
14. J. Farmer, Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes, 1994, US5425858A.
15. Jae-Bong Lee, Kwang-Kyu Park, Hee-Moon Eum, Chi-Woo Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination 196 (2006) 125-134.
16. Sung-il Jeon, Hong-ran Park, Jeong-gu Yeo, SeungCheol Yang, Churl Hee Cho, Moon Hee Han, Dong Kook Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes, Energy Environmental Science 6 (2013) 1471-1475.
17. Xingtao Xu, Miao Wang, Yong Liu, Ting Lu, Likun Pan, Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V, ACS Sustainable Chemical Engineering 5 (2017) 189-195.
18. 李儂,電容去離子技術中二價金屬離子與奈米孔洞活性碳電極電化學行為之研究,國立台灣大學環境工程所,碩士論文,2016。
19. 鐘琍菁,電容脫鹽技術(CDI)-下世代的低耗能脫鹽技術。
20. Marc A. Anderson, Ana L. Cudero, Jesus Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55 (2010) 3845-3856.
21. 曹知行,張淵斯,海水淡化的發展,科學發展,2009,第438期,32-39。
22. Ali Al-Karaghouli, Lawrence L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable and Sustainable Energy Reviews 24 (2013) 343-356.
23. Yoram Oren, Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review), Desalination 228 (2008) 10-29.
24. Linda Zou, Lixia Li, Huaihe Song, Gayle Morris, Using mesoporous carbon electrodes for brackish water desalination, Water research 42 (2008) 2340-2348.
25. Po-I Liu, Li-Ching Chung, Chia-Hua Ho, Hsin Shao, Teh-Ming Liang, Min-Chao Chang, Comparative insight into the capacitive deionization behavior of the activated carbon electrodes by two electrochemical techniques, Desalination 379 (2016) 34-41.
26. Linchen Han, K.G. Karthikeyan, Marc A. Anderson, Kelvin B. Gregory, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, Journal of Colloid and Interface Science 430 (2014) 93-99.
27. Izaak Cohen, Eran Avraham, Yaniv Bouhadana, Abraham Soffer, Doron Aurbach, Long term stability of capacitive de-ionization processes for water desalination: The challenge of positive electrodes corrosion, Electrochimica Acta 106 (2013) 91-100.
28. Yaniv Bouhadana, Eran Avraham, Malachi Noked, Moshe Ben-Tzion, Abraham Soffer, Doron Aurbach, Capacitive deionization of NaCl solutions at non-steady-state conditions: inversion functionality of the carbon electrodes, The Journal of Physical Chemistry C 115 (2011) 16567-16573.
29. Izaak Cohen, Eran Avraham, Malachi Noked, Abraham Soffer, and Doron Aurbach, Enhanced charge efficiency in capacitive deionization achieved by surface-treated electrodes and by means of a third electrode, The Journal of Physical Chemistry C 115 (2011) 19856-19863.
30. 謝齊峰,多孔性碳材料於電容去離子和逆向電容去離子系統之工作電位範圍探討,國立清華大學化學工程所,碩士論文,2017。
31. Chia-Hung Hou, Cheng-Ye Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination 314 (2013) 124-129.
32. Zheng-Hong Huang, Ming Wang, Lei Wang, Feiyu Kang, Relation between the Charge Efficiency of Activated Carbon Fiber and Its Desalination Performance, Langmuir 28 (2012), 5079-5084.
33. L. Demarconnay, E. Raymundo-Piñero, F. Béguin, A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution, Electrochemistry Communications 12 (2010) 1275-1278.
34. Hsiu-Chuan Chien, Tzu-Ho Wu, Muniyandi Rajkumar, Chi-Chang Hu, Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors, Electrochimica Acta 205 (2016) 1-7.
35. Taeyoung Kim, Jihyun Yu, Choonsoo Kim, Jeyong Yoon, Hydrogen peroxide generation in flow-mode capacitive deionization, Journal of Electroanalytical Chemistry 776 (2016) 101-104.
36. Wang-wang Tang, Di He, Chang-yong Zhang, Peter Kovalsky, T. David Waite, Water research 120 (2017) 229-237.
37. Jae-Hun Lee, Wi-Sup Bae, Jae-Hwan Choi, Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process, Desalination 258 (2010) 159-163.
38. Taeyoung Kim, Jeyong Yoon, CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization, RSC Advances 5 (2015) 1456-1461.
39. Yatian Qu, Patrick G. Campbell, Lei Gu, Jennifer M. Knipe, Ella Dzenitis, Juan G. Santiago, Michael Stadermann, Energy consumption analysis of constant voltage and constant current operations in capacitive deionization, Desalination 400 (2016) 18-24.
40. B. C. Lippens, J. H. De Boer, Studies on pore systems in catalysts V. The t method, Journal of Catalysis 4 (1965) 319-323.
41. Kenneth S. W. Sing, Douglas H. Everett, R. A. W. Haul, L. Moscou, Robert A. Pierotti, Jean Rouquerol, Teresa Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and applied chemistry 57 (1985) 603-619.
42. M. Thommes, Physical adsorption characterization of nanoporous materials, Chemie Ingenieur Technik 82 (2010) 1059-1073.
43. Feng Duan, Yuping Li, Hongbin Cao, Yi Wang, John C. Crittenden, Yi Zhang, Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment, Chemosphere 125 (2015) 205-211.
44. Yu-Jin Kim, Jae-Hwan Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Separation and Purification Technology 71 (2010) 70-75.
45. Tingting Yan, Baoxia Xu, Jianping Zhang, Liyi Shi, Dengsong Zhang, Ion-selective asymmetric carbon electrodes for enhanced capacitive deionization, RSC Advances 8 (2018) 2490-2497.
46. Lutfi Agartan, Bilen Akuzum, Tyler Mathis, Kurtay Ergenekon, Ertan Agar, E. Caglan Kumbur, Influence of thermal treatment conditions on capacitive deionization performance and charge efficiency of carbon electrodes, Separation and Purification Technology 202 (2018) 67-75.
47. Tingting Wu, Gang Wang, Qiang Dong, Bingqing Qian, Yulan Meng, Jieshan Qiu, Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode, Electrochimica Acta 176 (2015) 426-433.
48. Ding Lu, Wangfeng Cai, Yan Wang, Optimization of the voltage window for long-term capacitive deionization stability, Desalination 424 (2017) 53-61.
49. Ayokunle Omosebi, Xin Gao, James Landon, Kunlei Liu, Asymmetric Electrode Configuration for Enhanced Membrane Capacitive Deionization, ACS Applied Materials and Interfaces 6 (2014) 12640-12649.
50. Taeyoung Kim, Jeyong Yoon, Relationship between capacitance of activated carbon composite electrodes measured at a low electrolyte concentration and their desalination performance in capacitive deionization, Journal of Electroanalytical Chemistry 704 (2013) 169-174.