研究生: |
翁彩娟 T. J. Weng |
---|---|
論文名稱: |
利用基因微陣列系統分析極低頻電磁場對人類表皮細胞的影響 cDNA microarray analysis of human keratinocytes irradiated by ELF-EMF |
指導教授: |
許宗雄
T. H. Hseu 許志□ Ian C. Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 極低頻電磁場 、伽傌射線 、細胞週期 、細胞凋亡 、DNA複製 |
外文關鍵詞: | ELF-EMF, gamma ray, cell cycle, apoptosis, DNA replication |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的旨在利用細胞群落分析、基因微陣列系統與流式細胞儀研究細胞生存率、基因表現、細胞週期與細胞凋亡的改變,以了解極低頻電磁場對生物體的影響。基因微陣列晶片上共點印7334個經確定序列的人類基因,其中的每一個基因在每片晶片上皆點印四次重複。人類表皮細胞為人類面對環境壓力的第一道防線,所以選用此細胞研究極低頻電磁場的生物效應。一組實驗組的細胞先經過2 Gy伽傌射線照射後,再接受3小時極低頻電磁場(60 Hz,5 gauss)照射﹔另一組實驗組的細胞則是只接受極低頻電磁場的照射。細胞群落分析顯示不論細胞是否先經過伽傌射線的照射,極低頻電磁場照射皆並未對細胞的存活率造成明顯改變。基因分析的結果發現,細胞只接受極低頻電磁場的照射時,相關於DNA解螺旋與DNA複製的基因有下調的現象,其他與細胞週期、細胞凋亡相關的基因亦有受到調控。細胞先接受伽傌射線照射再加以極低頻電磁場干擾時,相關於DNA解螺旋及DNA複製的基因下調有累加的現象,然其他細胞週期與細胞凋亡的基因則沒有觀察到此現象。細胞週期分析中,依不同的細胞密度下進行實驗之結果不同,無法做出肯定之結論。細胞凋亡分析發現極低頻電磁場的照射並未能造成細胞凋亡的顯著改變。總結而言,利用基因微陣列系統研究極低頻電磁場的生物效應,本研究為第一個發現極低頻電磁場可影響細胞部分功能基因群的調控,這些基因包括細胞生存、細胞週期調控、細胞凋亡調控與DNA解螺旋相關之基因。雖然在細胞群落分析與流式細胞儀分析結果中,並沒有發現極低頻電磁場對細胞生存率、細胞週期與細胞凋亡造成明顯影響,然而這樣的結果可能意味著研究極低頻電磁場所造成的微弱生物效應,使用基因微陣列系統為敏感度較高的檢測工具。
The aim of this study was to investigate the possible biological effects of extremely low frequency field (ELF-EMF) by implementing three approaches - colony assay, cDNA microarray, and flow cytometry to evaluate the variation of cell survival rates, gene expression profiles, and cell cycle as well as apoptosis, respectively. Each in-house gene chip consisted of four replicated spots of each of 7334 sequence-verified human genes. We chose keratinocytes to analyze the biological effects of ELF-EMF because keratinocytes were the first line of self-defense of human body against to the environmental stress. Cells were exposed to ELF-EMF for 3 hours with or without pre-irradiation of 2 Gyγ-ray. The result of colony assay demonstrated that ELF-EMF exposure did not alter cell survival with or without priorγ-ray irradiation. However, the microarray data illustrated that ELF-EMF treatment repressed the expression of DNA helicase-related and DNA replication genes, as well as regulated the expression of several cell cycle-related and apoptotic genes. Moreover, data showed that when γ-ray irradiated keratinocytes were treated with additional ELF-EMF exposure, the DNA helicase-related and DNA replication genes were further down-regulated. However, the cell cycle- and apoptosis-related genes did not display similar regulatory characteristics. In flow cytometry approach, our results demonstrated that the cell cycle distributions affected by ELF-EMF were dependent on the cell density. Therefore, no firm conclusion can be drawn from the available data. Apoptotic analysis revealed that ELF-EMF exposure had not induce significant levels of apoptotic death in keratinocytes. In conclusion, our microarray data has shown for the first time that the expression of several group of genes were affected by ELF-EMF exposure, including cell survival-, cell cycle- and apoptosis-related genes as well as DNA helicase-related genes. Although colony assay and flow cytometry analysis had not detect any notable biological effects, this may imply that microarray analysis is a more sensitive screening tool to investigate minor biological effects caused by ELF-EMF exposure.
1. Wertheimer, N. and E. Leeper, Electrical wiring configurations and childhood cancer. Am J Epidemiol, 1979. 109(3): p. 273-84.
2. Savitz, D.A., et al., Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol, 1988. 128(1): p. 21-38.
3. Feychting, M., U. Forssen, and B. Floderus, Occupational and residential magnetic field exposure and leukemia and central nervous system tumors. Epidemiology, 1997. 8(4): p. 384-9.
4. Li, C.Y., G. Theriault, and R.S. Lin, Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology, 1997. 8(1): p. 25-30.
5. Ivancsits, S., et al., Induction of DNA strand breaks by intermittent exposure to extremely- low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res, 2002. 519(1-2): p. 1-13.
6. Ivancsits, S., et al., Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev, 2003. 124(7): p. 847-50.
7. Cho, Y.H. and H.W. Chung, The effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene. Toxicol Lett, 2003. 143(1): p. 37-44.
8. Robison, J.G., et al., Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics, 2002. 23(2): p. 106-12.
9. Manni, V., et al., Effects of extremely low frequency (50 Hz) magnetic field on morphological and biochemical properties of human keratinocytes. Bioelectromagnetics, 2002. 23(4): p. 298-305.
10. Zhou, J., et al., CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun, 2002. 296(4): p. 1013-8.
11. Nakasono, S., et al., Effect of power-frequency magnetic fields on genome-scale gene expression in Saccharomyces cerevisiae. Radiat Res, 2003. 160(1): p. 25-37.
12. Loberg, L.I., et al., Expression of cancer-related genes in human cells exposed to 60 Hz magnetic fields. Radiat Res, 2000. 153(5 Pt 2): p. 679-84.
13. Harada, S., et al., Effects of high ELF magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free DNA mismatch repair. Bioelectromagnetics, 2001. 22(4): p. 260-6.
14. Fam, W.Z. and E.L. Mikhail, Lymphoma induced in mice chronically exposed to very strong low-frequency electromagnetic field. Cancer Lett, 1996. 105(2): p. 257-69.
15. Yasui, M., et al., Carcinogenicity test of 50 Hz sinusoidal magnetic fields in rats. Bioelectromagnetics, 1997. 18(8): p. 531-40.
16. Rannug, A., et al., A study on skin tumour formation in mice with 50 Hz magnetic field exposure. Carcinogenesis, 1993. 14(4): p. 573-8.
17. Stuchly, M.A., et al., Modification of tumor promotion in the mouse skin by exposure to an alternating magnetic field. Cancer Lett, 1992. 65(1): p. 1-7.
18. Graham, C., et al., Nocturnal melatonin levels in human volunteers exposed to intermittent 60 Hz magnetic fields. Bioelectromagnetics, 1996. 17(4): p. 263-73.
19. Stevens, R.G., et al., Electric power, pineal function, and the risk of breast cancer. Faseb J, 1992. 6(3): p. 853-60.
20. Lai, H. and N.P. Singh, Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics, 1997. 18(2): p. 156-65.
21. McLean, J.R., et al., The effect of 60-Hz magnetic fields on co-promotion of chemically induced skin tumors on SENCAR mice: a discussion of three studies. Environ Health Perspect, 1997. 105(1): p. 94-6.
22. McNamee, J.P., et al., DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat Res, 2002. 513(1-2): p. 121-33.
23. Kurokawa, Y., et al., Acute exposure to 50 Hz magnetic fields with harmonics and transient components: lack of effects on nighttime hormonal secretion in men. Bioelectromagnetics, 2003. 24(1): p. 12-20.
24. Loscher, W. and R.P. Liburdy, Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res, 1998. 410(2): p. 185-220.
25. McCann, J., F. Dietrich, and C. Rafferty, The genotoxic potential of electric and magnetic fields: an update. Mutat Res, 1998. 411(1): p. 45-86.
26. Tubiana, M., J. Dutreix, and A. Wambersie, Introduction to radiobiology. 1990: Taylor & Francis.
27. Duggan, D.J., et al., Expression profiling using cDNA microarrays. Nat Genet, 1999. 21(1 Suppl): p. 10-4.
28. Yang, Y.H. and T. Speed, Design issues for cDNA microarray experiments. Nat Rev Genet, 2002. 3(8): p. 579-88.
29. Mendonca, M.S., et al., The radiosensitivity of human keratinocytes: influence of activated c-H-ras oncogene expression and tumorigenicity. Int J Radiat Biol, 1991. 59(5): p. 1195-206.
30. Sakamoto-Hojo, E.T., et al., Gene expression profiles in human cells submitted to genotoxic stress. Mutat Res, 2003. 544(2-3): p. 403-13.
31. Stojic, L., R. Brun, and J. Jiricny, Mismatch repair and DNA damage signalling. DNA Repair (Amst), 2004. 3(8-9): p. 1091-101.
32. Sahai, E., p53 Moves Into Control of Cell Morphology. Mol Intervent, 2002. 2(5): p. 286-9.
33. Hermeking, H., et al., 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell, 1997. 1(1): p. 3-11.
34. Wang, T., et al., hADA3 is required for p53 activity. Embo J, 2001. 20(22): p. 6404-13.
35. Shao, R.G., et al., Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. Embo J, 1999. 18(5): p. 1397-406.
36. Ding, H., et al., Functional interactions between Sp1 or Sp3 and the helicase-like transcription factor mediate basal expression from the human plasminogen activator inhibitor-1 gene. J Biol Chem, 1999. 274(28): p. 19573-80.
37. Kim, J., et al., The novel human DNA helicase hFBH1 is an F-box protein. J Biol Chem, 2002. 277(27): p. 24530-7.
38. Takei, Y., et al., MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3. EMBO Rep, 2001. 2(2): p. 119-23.
39. Wang, B., et al., Molecular cloning and characterization of rat karyopherin alpha 1 gene: structure and expression. Gene, 2004. 331: p. 149-57.
40. Ross, A.E., M. Vuica, and S. Desiderio, Overlapping signals for protein degradation and nuclear localization define a role for intrinsic RAG-2 nuclear uptake in dividing cells. Mol Cell Biol, 2003. 23(15): p. 5308-19.
41. Petersen-Mahrt, S.K. and M.S. Neuberger, In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J Biol Chem, 2003. 278(22): p. 19583-6.
42. Hirota, T., et al., Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol, 2000. 149(5): p. 1073-86.
43. Noben-Trauth, K., et al., Mybl2 (Bmyb) maps to mouse chromosome 2 and human chromosome 20q 13.1. Genomics, 1996. 35(3): p. 610-2.
44. Greene, L.S., Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J Am Coll Nutr, 1995. 14(4): p. 317-24.
45. Fjeld, C.C., et al., Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol Chem, 2000. 275(10): p. 6749-57.
46. Han, S., et al., TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors. Biochem Biophys Res Commun, 2003. 305(4): p. 789-96.
47. Tian, Q., et al., Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med, 1995. 182(3): p. 865-74.
48. Manes, S., et al., Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. J Biol Chem, 1997. 272(41): p. 25706-12.
49. Kari, C., et al., Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. Cancer Res, 2003. 63(1): p. 1-5.
50. Sarray, S., et al., Lebectin, a novel C-type lectin from Macrovipera lebetina venom, inhibits integrin-mediated adhesion, migration and invasion of human tumour cells. Lab Invest, 2004. 84(5): p. 573-81.
51. Levy, Y., et al., Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin. J Biol Chem, 2003. 278(16): p. 14533-42.
52. Wang, H., et al., Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science, 2001. 293(5531): p. 853-7.
53. Van Aelst, L. and C. D'Souza-Schorey, Rho GTPases and signaling networks. Genes Dev, 1997. 11(18): p. 2295-322.
54. Sahai, E. and C.J. Marshall, RHO-GTPases and cancer. Nat Rev Cancer, 2002. 2(2): p. 133-42.
55. Harris, P.A., et al., Possible attenuation of the G2 DNA damage cell cycle checkpoint in HeLa cells by extremely low frequency (ELF) electromagnetic field. Cancer Cell International, 2002. 2(1): p. 1-11.
56. Tian, F., et al., Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun, 2002. 292(2): p. 355-61.
57. Ding, G.R., et al., Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem Biophys Res Commun, 2001. 286(5): p. 953-7.
58. Goldberg, R.B. and W.A. Creasey, A review of cancer induction by extremely low frequency electromagnetic fields. Is there a plausible mechanism? Med Hypotheses, 1991. 35(3): p. 265-74.
59. Rosner, B., Fundamental of Biostatistics. 4th ed. 1995, Belmont, California: Wadsworth.