研究生: |
王亮凱 WANG, LIANG-KAI |
---|---|
論文名稱: |
基於E類放大器的磁共振無線電力傳輸系統參數設計實現於自走車 Parameter Design for Magnetic Resonance Wireless Power Transfer System Based on Class E Power Amplifier for implementation in Mobile Robot Using Microcontrollers |
指導教授: |
陳建祥
Chen, Jian-Shiang |
口試委員: |
葉廷仁
Yeh, Ting-Jen 林明璋 Lin, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 磁共振無線能量傳輸 、人工勢場法 、輪型機器人 、E類放大器 、避障 |
外文關鍵詞: | Magnetic Resonance Wireless Power Transfer, Artificial Potential Field Method, Wheeled robot, Class E Power Amplifier, Obstacle avoidance |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用Class-E放大器,實現無線充電系統架構。
Class-E電路目的經由開關訊號將MOSFET的drain端所輸入直流操作在零電壓(Zero Voltage Switching, ZVS)狀態,使放大器開關切換時所造成能量的損失減少,而實現其電路的方式則是利用電感與電容的諧振來完成。將共振槽(resonant tank)設計成低阻抗,就可以將電流鎖在此槽,即是鎖住能量,開關訊號輸入時的頻率影響著共振槽中儲存能量的頻率,當能量的頻率與共振槽中共振頻率吻合時,則能夠讓能量大量鎖在共振槽中。
實驗中包含無線能量傳輸電路模擬與鉛酸電池無線充電實驗。
本文實現於以人工勢場法為避障策略的輪型機器人,以為控制器為控制系統的核心,藉由雷射測距儀來擷取並分析環境資料。無線充電系統接收端安裝於輪型機器人上方,後端連接於輪型機器人電池,當完成一次任務後,輪型機器人回到車庫後,發射端線圈與接收端線圈形成磁共振效應,無線傳輸能量對輪型機器人所配備鉛酸電池進行充電。
In this paper, E-class amplifier realizes wireless charging system architecture.
The purpose of the Class-E circuit operates the drain terminal of the MOSFET through a switch signal to operate at a zero voltage (zero voltage switch, ZVS) state so that the loss of energy caused by the switching of the amplifier is reduced while the circuit is implemented by using an inductor resonance with the capacitor to complete. The resonant tank (resonant tank) is designed to a low impedance, the current can be locked in this tank, that is locked energy, the frequency of the switching signal input tank resonance energy storage frequency, when the energy of the resonant frequency in the slot coincides, a large amount of energy can be locked in the resonant tank.
Experiments include wireless energy transfer circuit simulation and lead-acid battery wireless charging.
In this paper, we implement a wheel-type robot with artificial potential field as obstacle avoidance strategy, taking the controller as the core of the control system and capturing and analyzing environmental data by laser range finder. The receiver of the wireless charging system is installed above the wheel-type robot, and the rear end is connected to the wheel-type robot battery. When the wheel-type robot returns to the garage after completing a task, the transmitter-end coil and the receiver-end coil form a magnetic resonance effect, The wheel-type robot is equipped with lead-acid batteries for charging.
[1] http://witricity.com/technology/witricity-the-basics/ Witricity-The Basics
[ 2] 詹作晟、陳秋麟,無線電能傳輸系統之分析與設計, 國立台灣大學電子工程研究所論文, pp 1-5, 2009.
[3] W. Chen, R. A. Chinga, S. Yoshida, J. Lin, C. Chen and W. Lo, “A 25.6 W 13.56 MHz Wireless Power Transfer System with a 94% Efficiency GaN Class-E Power Amplifier” Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pp. 1-3, 2012.
[4] Marian K. Kazimierczuk and Dariusz czarkowski, Resonant Power Converter. A Willey-Interscience Publication, pp. 347-378, 2001.
[5] F. Stubenrauch, N. Seliger, M. Schustek, A. Lebedev “A 13.56MHz class E power amplifier for inductively coupled DC supply with 95% Power Added Efficiency (PAE)” 2015 International EURASIP Workshop on RFID Technology (EURFID), pp 87-93, 2015.
[6] Narayanamoorthi R., Vimala Juliet A., Bharatiraja Chokkalingam, Sanjeevikumar Padmanaban and Zbigniew M. Leonowicz, “Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants”, MDPI Journals, Energies 2017, 10(9), 1409; doi:10.3390/en10091409
[7] Fu-Sheng Pai, Pei-Ru Ke, Ching-Lien Huang, Chia-Yan Lee, “Circuit Design of a Class-E Resonant Inverter for LED Driver”, 電力工程研討會, vol.31, pp 1763-1767, 中華民國九十九年十二月。
[8] Mustafa Özen, Rik Jos, Christian Fager, “Continuous Class-E Power Amplifier Modes”, IEEE Transactions On Circuits and Systems—II: Express Briefs, vol. 59, no. 11, November 2012
[9] Zhang Bin, Hao Xiao-hong, “Modeling and analysis of wireless power transmission system via strongly coupled magnetic resonances”, International Conference on Mechatronics and Control (ICMC), pp 70-75, July 2014.
[10] Chou-Yu Hsieh, Chao-Wen Chiang, “Design and Analysis of Resonator for Wireless Charging System with Magnetic Resonant Coupling”, 台灣電力電子研討會暨展覽會,vol.12,pp 564-568,中華民國一百零二年十一月。
[11] Shyh-Jier Huang, Fu-Sheng Pai, Yu-Jhe Li, Bo-Ge Huang, “Capacitor Compensation-Aided Contactless Power Transmission Design for Li-Ion Battery Charger Applications”, 電力工程研討會,vol.31,pp 166-172,中華民國九十九年四月。
[12] 李世華、李嘉猷,電動載具導軌型非接觸式感應饋電軌道之研製,國立成功大學電機工程研究所論文,中華民國一百年七月。
[13] 周思妤,利用人工勢場法於自走車動態避障之實現, 國立清華大學動力機械工程學系碩士論文,中華民國一百零五年七月。
[14] https://zh.wikipedia.org/wiki/集膚效應
[15] Yang, Chen-Ning, “On the Implementation of Collision Avoidance of a Wheeled-robot using Artificial Potential Field Approach”, National Tsing Hua University, Department of Power Mechanical Engineering, 2012.
[16] TeckChuan Beh, Masaki Kato, Takehiro Imura, Yoichi Hori, “Wireless Power Transfer System via Magnetic Resonant Coupling at Fixed Resonance Frequency-Power Transfer System Based on Impedance Matching”, World Electric Vehicle Journal Vol. 4, pp 1-10, 2010 Nov
[17] http://witricity.com/technology/witricity-the-basics/ Witricity-The-Basics
[18] https://zh.wikipedia.org/wiki/無線充電
[19] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.
[20] Y. Koren and J. Borenstein, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1398-1404, 1991.
[21] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 5, pp. 615-620, 2000.
[22] http://www.hokuyo-aut.jp/ 雷射測距儀URG-04LX參考資料
[23] http://www.microchip.com/ dsPIC33FJ128MC804 Data Sheet
[24] http://www.st.com/ STM32F407 Data Sheet
[25] http://www.st.com/web/en/home.html VNH2SP30-E Data Sheet
[26] http://www.pittman-motors.com/ Pittman DC Motor SPEC PAGE
[27] http://www.gs-battery.com.tw/index.php GS BATTERY
[28] http://robots.mobilerobots.com/ Pioneer 3 Operations Manual
[29] Liang, Li-Bo, “The Implementation of an Obstacle Avoidance System for a Mobile Robot Using Microcontrollers”, National Tsing Hua University, Department of Power Mechanical Engineering, 2014.
[30] Ming Wu and Jian-Shiang Chen, “The Design of Chattering Alleviated Sliding Mode Control Using Wavelet Approach,” International Automatic Control Coference, pp.480-485, 2013.