研究生: |
陳冠文 Chen, Kuan-Wen |
---|---|
論文名稱: |
Structural determination of flavin-dependent thymidylate synthase from Campylobacter jejuni |
指導教授: |
王雯靜
Wang, Wen-Ching |
口試委員: |
林立元
楊進木 許宗雄 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 空腸彎曲桿菌 、X-ray繞射 、蛋白質結晶體學 、甲基化 、去氧胸線核苷單磷酸 、藥物設計 |
外文關鍵詞: | Thymidylate synthase, Campylobacter jejuni, crystal structure, X-ray, ThyX, Structural-based |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Flavin-dependent thymidylate synthase (FDTS) 又稱作ThyX,是一種細菌特有的去氧胸線核苷單磷酸 (dTMP) 合成酵素,主要是將甲基四氫葉酸 (CH2H4folate) 上的甲基轉移至去氧尿苷單磷酸 (dUMP) 含氮鹼基的五號碳上,由於哺乳類動物合成去氧尿苷單磷酸是依靠不同的催化酵素反應,所以ThyX很有可能成為針對細菌進行抑制的標靶目標。在本研究中,主要以解構空腸彎曲桿菌 (Campylobacter jejuni) 的ThyX酵素結構為目的,由於目前沒有相似度高的ThyX作為相位模板,所以我們只能依靠重金屬原子在蛋白質晶體內的特殊吸收光波長來得到相位差,最後是以第17和49號的丙胺酸 (Alanine) 和第110號的白胺酸 (Leucine) 作為蛋胺酸 (Methionine) 點突變的位置,以進行有機態銫 (Selenomethionine) 的晶體培養。利用單一光波長異常散射(Single-wavelength anomalous dispersion, SAD) 的方法,我們成功的解出CjThyX複合物蛋白結構以及突變過後的CjThyX結構。CjhyX結構主要由三個區域所組成,分別是點端螺旋區域、底度螺旋區域和中央α/β混和區域,在中央區域裡發現受質dUMP和FAD與蛋白質結構間的接合。透過與點突變的CjThyX結構以及其他物種的ThyX比較,第86號氨基胍基戊酸 (Arginine) 、第85號羥丁氨酸以及第84號絲氨酸會有結構上的螺旋偏移以進行與受質dUMP的結合。此外,透過活化位的殘基觀察,整個ThyX催化反應是由FAD上的N5氮原子去攻擊dUMP上的C6碳原子所啟動。這些發現對於未來進行以結構為基底的藥物設計方法提供了很多資訊
Flavin-dependent thymidylate synthase (FDTS) ThyX that catalyzes the biosynthesis of TMP by the methylation of uracil moiety of dUMP is crucial for the growth of several important human pathogens including Helicobacter pylori, Mycobacteria tuberculosis, and Campylobacter jejuni. Given its uniqueness, ThyX has been recognized as a promising target for the development of anti-bacterial drug. Here, we determined the Campylobacter jejuni ThyX (CjThyX) structure to 3.0 Å resolution using single-wavelength anomalous dispersion methods on a mutant of CjThyX (A17MA49ML110M). Based on the mutant structure, we are able to solve the wild-type CjThyX.dUMP.FAD as well as A17MA49ML110M.dUMP.FAD to 2.2 Å and 2.45 Å resolution, respectively.
The monomeric wild-type CjThyX structure is composed of 11 α-helices and 4 anti-parallel β-strands. Homotetramer is observed in which four FAD and dUMP molecules are situated at the interface of inter-subunits. In the active site, Ser84, Thr85, and Arg86 clamp the dUMP at a favor position through a helical shift. FAD is bound by the unique ThyX motif near the uridyl ring of dUMP. Structural comparisons with HpThyX and MtThyX indicate that the catalytic sites of ThyX enzyme in different species are highly conserved. The biosynthetic mechanism of CjThyX might also similar to HpThyX which is driven by attacking the C6 position of dUMP via the nitrogen atom N5 of the non-enzymatic nucleophile FADH2.
1. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. (1999). Food-related illness and death in the United States. Emerg Infect Dis 5, 607-25.
2. Young, K. T., Davis, L. M. & Dirita, V. J. (2007). Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5, 665-79.
3. Hendrixson, D. R. & DiRita, V. J. (2004). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52, 471-84.
4. Chaveerach, P., ter Huurne, A. A., Lipman, L. J. & van Knapen, F. (2003). Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. Appl Environ Microbiol 69, 711-4.
5. Wilson, D. J., Gabriel, E., Leatherbarrow, A. J., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Fearnhead, P., Hart, C. A. & Diggle, P. J. (2008). Tracing the source of campylobacteriosis. PLoS Genet 4, e1000203.
6. Havelaar, A. H., van Pelt, W., Ang, C. W., Wagenaar, J. A., van Putten, J. P., Gross, U. & Newell, D. G. (2009). Immunity to Campylobacter: its role in risk assessment and epidemiology. Crit Rev Microbiol 35, 1-22.
7. Konkel, M. E., Monteville, M. R., Rivera-Amill, V. & Joens, L. A. (2001). The pathogenesis of Campylobacter jejuni-mediated enteritis. Curr Issues Intest Microbiol 2, 55-71.
8. Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O. & Obi, C. L. (2002). Human campylobacteriosis in developing countries. Emerg Infect Dis 8, 237-44.
9. Allos, B. M. (2001). Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 32, 1201-6.
10. Griggs, D. J., Johnson, M. M., Frost, J. A., Humphrey, T., Jorgensen, F. & Piddock, L. J. (2005). Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. Antimicrob Agents Chemother 49, 699-707.
11. Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S., Fanning, S., Kempf, I., Lastovica, A. J., Lowery, C. J., Matsuda, M., McDowell, D. A., McMahon, A., Millar, B. C., Rao, J. R., Rooney, P. J., Seal, B. S., Snelling, W. J. & Tolba, O. (2006). The epidemiology of antibiotic resistance in Campylobacter. Microbes Infect 8, 1955-66.
12. Li, C. C., Chiu, C. H., Wu, J. L., Huang, Y. C. & Lin, T. Y. (1998). Antimicrobial susceptibilities of Campylobacter jejuni and coli by using E-test in Taiwan. Scand J Infect Dis 30, 39-42.
13. Chatre, P., Haenni, M., Meunier, D., Botrel, M. A., Calavas, D. & Madec, J. Y. (2010). Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from cattle between 2002 and 2006 in France. J Food Prot 73, 825-31.
14. Meng, C. Y., Smith, B. L., Bodhidatta, L., Richard, S. A., Vansith, K., Thy, B., Srijan, A., Serichantalergs, O. & Mason, C. J. (2011). Etiology of diarrhea in young children and patterns of antibiotic resistance in Cambodia. Pediatr Infect Dis J 30, 331-5.
15. Zaharevitz, D. W., Anderson, L. W., Malinowski, N. M., Hyman, R., Strong, J. M. & Cysyk, R. L. (1992). Contribution of de-novo and salvage synthesis to the uracil nucleotide pool in mouse tissues and tumors in vivo. Eur J Biochem 210, 293-6.
16. Hunter, J. H., Gujjar, R., Pang, C. K. & Rathod, P. K. (2008). Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS One 3, e2237.
17. Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P. & Liebl, U. (2002). An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297, 105-7.
18. Leduc, D., Graziani, S., Meslet-Cladiere, L., Sodolescu, A., Liebl, U. & Myllykallio, H. (2004). Two distinct pathways for thymidylate (dTMP) synthesis in (hyper)thermophilic Bacteria and Archaea. Biochem Soc Trans 32, 231-5.
19. Leduc, D., Escartin, F., Nijhout, H. F., Reed, M. C., Liebl, U., Skouloubris, S. & Myllykallio, H. (2007). Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J Bacteriol 189, 8537-45.
20. Agrawal, N., Lesley, S. A., Kuhn, P. & Kohen, A. (2004). Mechanistic studies of a flavin-dependent thymidylate synthase. Biochemistry 43, 10295-301.
21. Koehn, E. M., Fleischmann, T., Conrad, J. A., Palfey, B. A., Lesley, S. A., Mathews, II & Kohen, A. (2009). An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458, 919-23.
22. Kogler, M., Vanderhoydonck, B., De Jonghe, S., Rozenski, J., Van Belle, K., Herman, J., Louat, T., Parchina, A., Sibley, C., Lescrinier, E. & Herdewijn, P. (2011). Synthesis and Evaluation of 5-Substituted 2'-deoxyuridine Monophosphate Analogues As Inhibitors of Flavin-Dependent Thymidylate Synthase in Mycobacterium tuberculosis. J Med Chem.
23. Esra Onen, F., Boum, Y., Jacquement, C., Spanedda, M. V., Jaber, N., Scherman, D., Myllykallio, H. & Herscovici, J. (2008). Design, synthesis and evaluation of potent thymidylate synthase X inhibitors. Bioorg Med Chem Lett 18, 3628-31.
24. Chernyshev, A., Fleischmann, T. & Kohen, A. (2007). Thymidyl biosynthesis enzymes as antibiotic targets. Appl Microbiol Biotechnol 74, 282-9.
25. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology. Macromolecular Crystallography, Pt A 276, 307-326.
26. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-54.
14. Meng, C. Y., Smith, B. L., Bodhidatta, L., Richard, S. A., Vansith, K., Thy, B., Srijan, A., Serichantalergs, O. & Mason, C. J. (2011). Etiology of diarrhea in young children and patterns of antibiotic resistance in Cambodia. Pediatr Infect Dis J 30, 331-5.
15. Zaharevitz, D. W., Anderson, L. W., Malinowski, N. M., Hyman, R., Strong, J. M. & Cysyk, R. L. (1992). Contribution of de-novo and salvage synthesis to the uracil nucleotide pool in mouse tissues and tumors in vivo. Eur J Biochem 210, 293-6.
16. Hunter, J. H., Gujjar, R., Pang, C. K. & Rathod, P. K. (2008). Kinetics and ligand-binding preferences of Mycobacterium tuberculosis thymidylate synthases, ThyA and ThyX. PLoS One 3, e2237.
17. Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P. & Liebl, U. (2002). An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297, 105-7.
18. Leduc, D., Graziani, S., Meslet-Cladiere, L., Sodolescu, A., Liebl, U. & Myllykallio, H. (2004). Two distinct pathways for thymidylate (dTMP) synthesis in (hyper)thermophilic Bacteria and Archaea. Biochem Soc Trans 32, 231-5.
19. Leduc, D., Escartin, F., Nijhout, H. F., Reed, M. C., Liebl, U., Skouloubris, S. & Myllykallio, H. (2007). Flavin-dependent thymidylate synthase ThyX activity: implications for the folate cycle in bacteria. J Bacteriol 189, 8537-45.
20. Agrawal, N., Lesley, S. A., Kuhn, P. & Kohen, A. (2004). Mechanistic studies of a flavin-dependent thymidylate synthase. Biochemistry 43, 10295-301.
21. Koehn, E. M., Fleischmann, T., Conrad, J. A., Palfey, B. A., Lesley, S. A., Mathews, II & Kohen, A. (2009). An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene. Nature 458, 919-23.
22. Kogler, M., Vanderhoydonck, B., De Jonghe, S., Rozenski, J., Van Belle, K., Herman, J., Louat, T., Parchina, A., Sibley, C., Lescrinier, E. & Herdewijn, P. (2011). Synthesis and Evaluation of 5-Substituted 2'-deoxyuridine Monophosphate Analogues As Inhibitors of Flavin-Dependent Thymidylate Synthase in Mycobacterium tuberculosis. J Med Chem.
23. Esra Onen, F., Boum, Y., Jacquement, C., Spanedda, M. V., Jaber, N., Scherman, D., Myllykallio, H. & Herscovici, J. (2008). Design, synthesis and evaluation of potent thymidylate synthase X inhibitors. Bioorg Med Chem Lett 18, 3628-31.
24. Chernyshev, A., Fleischmann, T. & Kohen, A. (2007). Thymidyl biosynthesis enzymes as antibiotic targets. Appl Microbiol Biotechnol 74, 282-9.
25. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology. Macromolecular Crystallography, Pt A 276, 307-326.
26. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-54.strain SS1. Protein Sci.