簡易檢索 / 詳目顯示

研究生: 鄒蘊明
Tzou, Yeun-Ming
論文名稱: 雙核心毛細泵吸環路之穩態溫度分佈理論模型
Steady State Heat Transfer Simulation for Temperature Distribution of Capillary Pumped Loop with Dual Core Evaporators
指導教授: 林唯耕
口試委員: 王鴻博
魏玉麟
白寶實
馮玉明
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 81
中文關鍵詞: 毛細泵吸環路熱阻熱管雙核心蒸發器軸向熱傳
外文關鍵詞: CPL, thermal resistance, heat pipe, dual core evaporators, axial heat transfer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毛細泵吸環路(Capillary Pumped Loop, CPL)為無須外能而自然運作高效率之兩相流熱傳裝置,從太空應用到高功電子構裝已被研究與利用。隨著微處理器效能的不斷發展,不但其現有體積越來越小,然而單位面積的發熱量卻節節攀升,如今雙核心CPU已成為普遍個人電腦(Personal Computer, PC)的邏輯處理運作模式,因此必須要有好散熱元件的幫助,同時勢必要有更良好的傳熱原件,最傳統的方法是使用各種製程的散熱鰭片,搭配上各種形式且低成本的熱管,但受到熱管中毛細結構的影響,與其空間幾何限制,熱管已逐漸不敷使用,轉而使用其他兩相傳熱裝置,例如CPL與環路式熱管(Loop Heat Pipe, LHP)。
    本論文目的在研究雙熱源核心蒸發部之CPL的溫度分佈,有助CPL工業發展;提供一套理論模式並寫成軟體,能夠快速並準確的預測雙熱源CPL的溫度,並且利用實驗驗證並修正參數與理論模式,進而幫助雙熱源CPL的設計,在製造前可提供做為參考,改善傳統需要製造後才可得到CPL熱阻值與性能的缺點,本論文已發展出穩態軸向傳熱方法,可預測雙核CPL部件溫度。依據本理論模型,理論值與實驗值已得一致性,且其模擬溫度的趨勢是合理的,模擬結果與實驗值的偏差在輸入熱功率為190瓦時為10%內,然而在低於150瓦時,亦即80、100、130與150瓦時,偏差在5%以內。
    本論文的實驗和模擬之結果與模式,亦可延伸應用至熱傳機制相似,但熱傳模式更為複雜的均溫板(Vapor Chamber)。再者,本論文的結果,除了應用至資訊產業以外,亦可應用至目前炙手可熱的太陽光電板、太陽熱能發電、LED、LED照明與LED相關之綠能產業,解決熱管理問題,以提升能源效率與延長其壽命。


    A Capillary Pumped Loop (CPL) is a two-phase heat transfer device with high efficiency. It does not need any external energy or other mechanical force such as pumping force. A CPL has been widely utilized to perform the thermal management for high power electronic components such as in spacecrafts, notebooks and computer servers.
    This research aimed to study the simulation method of the temperature distribution of the CPL with dual core evaporators. A steady-state axial heat transfer method was developed to predict the temperatures of the pipelines. The temperatures of the segments of the CPL could be reckoned from the theoretical model. A good agreement between the simulation results and experimental values was achieved. The Temperatures would increase with increment of the applied heat load. The maximum error between the experimental data and simulation results for evaporator temperatures of the CPL with dual core evaporators was within 10% at 190 watts heat input, but the error is lower within 5% with decreasing of the heat load, when it is less than 150 watts, namely 80 watts, 100 watts, 130 watts and 150 watts.
    In this study, the simulation results can be used for the new application of the design and simulation of Vapor Chambers (VCs) for the similar heat transfer mechanism with the heat transfer models to be more complex expanded as two dimensional or three dimensional models. In addition, the simulation results and experimental data are very good and consistent, and they would be very useful for further applications in the industries of green technology of solar cells, photovoltaic modules by solar energy, and solar thermal energy for electric power generation, LEDs, LED lighting and LED related industries.

    摘要 II ABSTRACT III 誌謝 IV CONTENTS V FIGURE CONTENTS VII TABLE CONTENTS IX NOMENCLATURE X 1. INTRODUCTION 1 1.1. Research Background 1 1.2. Literature reviews 2 2. THEORETICAL MODELS 6 2.1. Heat Transfer Analysis in Evaporators 6 2.2. Axial Heat Transfer Simulation Mode in Vapor Line 10 2.3. Heat Transfer Analysis in Condenser 16 2.4. Thermal Resistance Analysis in Liquid Line 17 2.5. Design of Evaporators 18 2.6. Calculation of the pressure and the temperature at T-junction of the vapor line 21 2.7. Calculation of the pressure drop in the vapor line and liquid line 21 2.8. Calculation of the pressure drop in the two phase zone of the condenser 22 2.9. Pressure drop of multiple evaporators 25 3. SIMULATION AND EXPERIMENTAL METHODOLOGY 28 3.1. Simulation of the temperature on the evaporator 29 3.2. Simulation of the temperature on the condenser 32 3.3. Simulation of the temperature and the pressure on the liquid line 38 3.4. Experiments for Pressure Drop of Parallel Flow 39 3.5. Properties of Thermodynamics 45 3.6. Brief of the Program 50 3.7. Methods of evaporator structure experiments 55 4. RESULTS AND DISCUSSION 59 4.1. Experiment of pressure drop 59 4.2. Experiments of evaporator structure 62 4.3. Simulation Results 66 5. CONCLUSION 75 REFERENCES 78

    [1] Y. Joshi and P. Kumar, “Energy Eficient Thermal Management of Data Center”, Springer Science+Business Media, LLC, Chapter 1, 2012, Page 5
    [2] Y.M.Tzou, “The Thermal Control Capability of Two-Phase Capillary Pumped Prototype Loop Experiments”, Engineering & System Science Department, National Tsing-Hua University, Taiwan, Mater thesis,1998
    [3] F. J. Stenger, Experimental Feasibility Study of Water-Filled Capillary-Pumped Heat Transfer Loop, National Aeronautics and Space Administration, TM X-1310, Lewis Research Center, Cleveland, Ohio , United States, 1966
    [4] Y. F. Maidanik, S. V. Vershinin, V. F. Kholodov, and J. E. Dolgire, “Heat Transfer Apparatus”, United States Patent, No.4515209, May 1998
    [5] M. Nikitkin and B. Cullimore, “CPL and LHP Technologies: What are the Differences, What are the Similarities”, SAE Technical Paper 981587, 1998, doi:10.4271/981587
    [6] C. T. Conroy, R. G. Mahorter, J. A. Savchik, T. T. Hoang, T. A. O'Connell, and J. Rosenfeld, “Multiple Flat Plate Evaporator Loop Heat Pipe Demonstration”, 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, 2003, AIAA-2003-6047
    [7] AAVID Engineering Inc., “OASIS Heat Dissipation System Technical Data and Specifications”, 1993
    [8] K.J. Zan, C.J. Zan, Y.M. Chen and S.J. Wu, “Analysis of the Parameters of the Sintered Loop Heat Pipe”, Heat Transfer-Asian Research, Volume 33, No. 8, 2004, Pages 515-526
    [9] Z. Liu and W. Liu, “A New Type Capillary Pumped Loop: Analysis, Design and Experimental Investigation”, EcoLibriumTM, October 2005, Pages 20-28
    [10] J.H. Cheng, Y.T. Tseng, F.G. Tseng, W.K. Lin and C.C. Chieng, “Self-Driven Flow Loop in Microscale”, Journal of the Chinese Society of Mechanical Engineers, Volume 26, No. 1, 2005, Pages 19-26
    [11] C.S. Jwo, T.P. Teng, H. Chang and S.L. Chen, ”Research on Pressure Loss of Alumina Nanofluid Flow in a Pipe” Journal of the Chinese Society of Mechanical Engineers, Volume 30, No. 6, 2009, Pages 511-517
    [12] J.C. Wang, R.T. Wang, C.C. Chang, and C.L. Huang, “Program for Rapid Computation of the Thermal Performance of a Heat Sink with Embedded Heat Pipes”, Journal of the Chinese Society of Mechanical Engineers, Volume 31, Issue 01, Feburary 2010, Pages 21-28
    [13] T.C. Yao, “Development of Loop Heat Pipe Steady-State Model and its Application”, National Taiwan University, Taiwan, Mater thesis, 2007
    [14] H.W. Lin and W.K. Lin, “An Axial Heat Transfer Analytical Model for Capillary Pumped Loop Vapor Line Temperature Distributions”, Applied Thermal Engineering, Volume 27, Issues 11-12, August 2007, Pages 2086-2094
    [15] C.T. Wang, T.S. Leu, and T.M. Lai, "Micro capillary pumped loop system for a cooling high power device", Experimental Thermal and Fluid Science, Volume 32, Issue 5, 2008, Pages 1090-1095
    [16] T.S. Leu, N.J. Huang and C.T. Wang, "Dimensional Effect of Micro Capillary Pumped Loop", Journal of Mechanics, Volume 26, Issue 02, June 2010, Pages 157-163
    [17] B. R. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, John Wiley & Sons, New York, United States, 2002, Pages 310-316
    [18] M. M. Shah, “A General Correlation for Heat Transfer during Film Condensation inside Pipes”, International Journal of Heat and Mass Transfer, Volume 22, 1979, Pages 547-556
    [19] S. E. Haaland, “Simple and Explicit Formulas for the Friction Factor in Turbulent flow”, Journal of Fluids Engineering, 105, 1983, Pages 89-90
    [20] G. B. Wallis, One-Dimension Two-Phase Flow, McGraw-Hill, New York, United States, 1969
    [21] R. W. Lockhart and R. C. Martinelli, “Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes”, Chemical Engineering Progress, Volume 45, No. 1, 1949, Pages 39-48

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE