研究生: |
劉冠廷 Liu, Kuan-Ting |
---|---|
論文名稱: |
氣懸膠體成長建模與實驗建立於醇胺溶液捕獲二氧化碳製程 Experiment and modeling of aerosol growth in amine-based CO2 capture absorber |
指導教授: |
鄭西顯
Jang, Shi-Shang |
口試委員: |
汪上曉
Wong, David Shan-Hill 吳煒 Wu, wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 氣懸膠體 、二氧化碳捕獲 、胺類排放 |
外文關鍵詞: | Aerosol, CO2 capture, amine emission |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在驗證氣膠於吸收塔內成長機構與藉由改變操作條件以移除氣膠微粒。在此研究中,模擬氣膠成長情形於二氧化碳捕獲吸收塔,以乙醇胺作為吸收溶劑,由Aspen Plus®吸收塔模擬可得到吸收塔內所需數據,再利用gPROMS進行氣膠微粒成長與乙醇胺排放量之計算,並利用實驗室級吸收塔驗證此模型。在模擬中可給予起始粒徑與微粒數目濃度,結果顯示當微粒數目提高時,氣膠的成長將被抑制,粒徑隨微粒數目濃度提高而變小,當微粒數目提高時,乙醇胺的排放量也隨之提升,大量的乙醇胺排放至大氣中,藉此推斷微粒數目濃度對於氣膠成長與乙醇胺的排放量有著極大的影響。
This study seeks to validate the aerosol growth models and establish a strategy to remove aerosol by changing specifications and adjusting operating conditions of amine scrubbers. In this study, aerosol growth in CO2 capture absorber using monoethanolamine(MEA) solution was simulated. Absorber profile is obtained from process modeling using Aspen Plus® and is input to gPROMS model for aerosol growth and amine emission calculation, the model was validated by the experiment of bench scale absorber. Given an initial water aerosol size and particle number concentration that is saturated with inlet flue gas content, the results show that the effect of aerosol particle number concentration is significant, the final size of the aerosol decreases as particle number concentration increases, and aerosol growth is inhibited with a very high particle number concentration. An amount of amine being carried out into the atmosphere and also increase with the initial aerosol number concentration.
[1] J. Albo, P. Luis, and A. Irabien, "Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate," Industrial & Engineering Chemistry Research, vol. 49, pp. 11045-11051, 2010.
[2] J. Blunden, D. S. Arndt, C. Achberger, S. A. Ackerman, A. Albanil, P. Alexander, et al., "State of the climate in 2012," Bulletin of the American Meteorological Society, vol. 94, pp. 1-238, 2013.
[3] I. Statistics, "Key world energy statistics," OECD/IEA, 2012.
[4] S. M. Benson, "Carbon dioxide capture and storage in underground geologic formations," The 10-50 Solution: Technologies and Policies for a Low-Carbon Future, 2005.
[5] O. D. H. d. C. B. Metz, M. Loos and L. Meyer, "Carbon dioxide capture and storage," pp. 2-46, 2005.
[6] M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw, "Post-combustion CO2 capture with chemical absorption: a state-of-the-art review," Chemical Engineering Research and Design, vol. 89, pp. 1609-1624, 2011.
[7] B. Thitakamol, A. Veawab, and A. Aroonwilas, "Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant," International Journal of Greenhouse Gas Control, vol. 1, pp. 318-342, 2007.
[8] N. A. Fine, M. J. Goldman, P. T. Nielsen, and G. T. Rochelle, "Managing n-nitrosopiperazine and dinitrosopiperazine," Energy procedia, vol. 37, pp. 273-284, 2013.
[9] N. Dave, T. Do, P. Jackson, P. Feron, M. Azzi, and M. Attalla, "CO2 capture mongstad-project B theoretical evaluation of the potential to form and emit harmful compounds," in Task 1: Process Chemistry. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Report, Australia, 2010.
[10] M. Iijima, T. Nagayasu, T. Kamijyo, and S. Nakatani, "MHI’s energy efficient flue gas CO2 capture technology and large scale ccs demonstration test at coal-fired power plants in USA," Mitsubishi Heavy Industries Technical Review, vol. 48, p. 26, 2011.
[11] T. Kamijo, Y. Kajiya, T. Endo, H. Nagayasu, H. Tanaka, T. Hirata, et al., "SO3 impact on amine emission and emission reduction technology," Energy Procedia, vol. 37, pp. 1793-1796, 2013.
[12] L. Brachert, J. Mertens, P. Khakharia, and K. Schaber, "The challenge of measuring sulfuric acid aerosols: number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)," Journal of aerosol science, vol. 67, pp. 21-27, 2014.
[13] J. Mertens, L. Brachert, D. Desagher, M. Thielens, P. Khakharia, E. Goetheer, et al., "ELPI+ measurements of aerosol growth in an amine absorption column," International Journal of Greenhouse Gas Control, vol. 23, pp. 44-50, 2014.
[14] P. Khakharia, L. Brachert, J. Mertens, C. Anderlohr, A. Huizinga, E. S. Fernandez, et al., "Understanding aerosol based emissions in a Post Combustion CO2 Capture process: Parameter testing and mechanisms," International Journal of Greenhouse Gas Control, vol. 34, pp. 63-74, 2015.
[15] J. Bradie and A. Dickson, "Removal of entrained liquid droplets by wire-mesh demisters," in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, pp. 195-203, 1969.
[16] H. T. El-Dessouky, I. M. Alatiqi, H. M. Ettouney, and N. S. Al-Deffeeri, "Performance of wire mesh mist eliminator," Chemical Engineering and Processing: Process Intensification, vol. 39, pp. 129-139, 2000.
[17] S. M. Fulk and G. T. Rochelle, "Modeling aerosols in amine-based CO2 capture," Energy Procedia, vol. 37, pp. 1706-1719, 2013.
[18] K. T. Victor Darde, Willy J. M. van Well,Davide Bonalumi,Gianluca Valenti,Ennio Macchi, "Comparison of two electrolyte models for the carbon capture with aqueous ammonia," International Journal of Greenhouse Gas Control, vol. 8, pp. 61-72, 2012.
[19] D. M. Austgen, G. T. Rochelle, X. Peng, and C. C. Chen, "Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation," Industrial & Engineering Chemistry Research, vol. 28, pp. 1060-1073, 1989.
[20] J. Liu, H.-C. Gao, C.-C. Peng, D. S.-H. Wong, S.-S. Jang, and J.-F. Shen, "Aspen Plus rate-based modeling for reconciling laboratory scale and pilot scale CO2 absorption using aqueous ammonia," International Journal of Greenhouse Gas Control, vol. 34, pp. 117-128, 2015.
[21] R. Taylor and R. Krishna, "Modelling reactive distillation," Chemical Engineering Science, vol. 55, pp. 5183-5229, 2000.
[22] R. Krishna and G. Standart, "A multicomponent film model incorporating a general matrix method of solution to the Maxwell‐Stefan equations," AIChE Journal, vol. 22, pp. 383-389, 1976.
[23] S. Freguia and G. T. Rochelle, "Modeling of CO2 capture by aqueous monoethanolamine," AIChE Journal, vol. 49, pp. 1676-1686, 2003.
[24] Y. Zhang, H. Chen, C.-C. Chen, J. M. Plaza, R. Dugas, and G. T. Rochelle, "Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution," Industrial & engineering chemistry research, vol. 48, pp. 9233-9246, 2009.
[25] R. Billet and M. Schultes, "Predicting mass transfer in packed columns," Chemical engineering & technology, vol. 16, pp. 1-9, 1993.
[26] 高涵綺, "利用煤化學工廠自產氨水捕獲二氧化碳之應用," 碩士論文, 清華大學化學工程學系, 2014.
[27] J. H. Seinfeld, S. N. Pandis, and K. Noone, "Atmospheric chemistry and physics: from air pollution to climate change," AIP, 1998.
[28] F.C. Lee, Y.F. Lu, F.C. Chou, C.F. Cheng, R.M. Ho, and D.H. Tsai, "Mechanistic study of gas-phase controlled synthesis of copper oxide-based hybrid nanoparticle for CO oxidation," The Jounal of Physical Chemistry C, vol. 120, pp.13638-13648, 2016.
[29] N. Chamchan, "Validation of packed bed and rotating packed bed absorber model with pilot-plant data," 碩士論文, 清華大學化學工程學系, 2016.
[30] H. M. Kvamsdal and G. T. Rochelle, "Effects of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine," Industrial & Engineering Chemistry Research, vol. 47, pp. 867-875, 2008.