簡易檢索 / 詳目顯示

研究生: 陳怡貝
Chen, Yi-Bei
論文名稱: 在智慧聯網中一個針對即時資料回報之省電排程演算法
An Energy-Efficient Scheduling Algorithm for Real-Time Data Reporting in Machine-to-Machine Communication Networks
指導教授: 楊舜仁
Yang, Shun-Ren
口試委員: 高榮駿
Kao, Jung-Chun
黃志煒
Huang, Chih-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 25
中文關鍵詞: 機器間通訊即時訊息回報省電效能
外文關鍵詞: machine-to-machine (M2M), real-time data reporting, energy efficiency
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器間通訊 (Machine-to-Machine, M2M) 指的是機器在沒有人為介入的情況下彼此自動相互通訊,藉著這樣的訊息交換,來共同提供相關的M2M服務。關於機器間通訊之技術已有相當廣泛之應用,即時訊息回報 (Real-time data reporting) 對大多數應用而言是非常重要的需求,藉著M2M節點週期性的回報感測之訊息,後端M2M伺服器可以即時監控M2M節點端環境之變化並做出回應以提供相關服務。由於M2M節點通常只配備電池供應之電能,因此有效的節省M2M節點端之電能消耗是能否提供完整M2M服務之關鍵,然而,M2M節點配備了多種類型之感測器以感測不同種類之資料,並且會根據不同種類資料之回報周期定期回傳相關感測資訊,在缺乏適當排程機制來協調M2M節點端各種類型資料之傳送時間的情況下,隨著M2M節點要感測的資料種類增加,M2M節點必須在幾乎每一個時槽保持主動模式以傳送感測資料,進而導致大量之電能消耗。本篇論文中提出了一個針對即時資料回報之排程演算法,演算法的目的在於節省M2M節點端之電能消耗,我們首先將問題模組成一個電能最小化問題並證明此問題之複雜度,接著,針對此問題提出了我們的省電排程演算法,最後,在效能分析中,顯示我們的演算法可以有效的節省M2M節點端之電能消耗,並且保證感測訊息在傳送期限內送達以及資源的平均分配。


    Machine-to-Machine (M2M) communication technology has recently gained intense attention and been utilized in a variety of applications. Real-time data reporting is a basic requirement of most of the M2M applications. By the real-time data reported from the M2M nodes, the back-end M 2M server can perform remote monitoring and provide corresponding services. Since M2M nodes are usually with limited battery power supply, energy-saving for M2M nodes becomes a critical issue on supporting M2M communications. In this paper, we propose an energy-efficient scheduling algorithm for real-time data reporting in the purpose of reducing the energy consumption of M2M nodes. We first model the energy-efficient problem into an optimization problem and prove the hardness of this problem. To address this problem, we propose our energy-efficient scheduling algorithm. Last, we measure the performance of our algorithm and show that our algorithm can effectively guarantee the fairness and data aborted rate while achieve energy efficiency.

    Abstract i Contents ii List of Figures iv List of Tables v 1 Introduction 1 2 Problem Formulation 5 2.1 Assumptions 5 2.2 Network Architecture and Notations 6 2.3 Problem Formulation 8 2.4 Problem Complexity 9 2.5 Difference from Bin-Packing 11 3 Energy-Efficient Scheduling Algorithm 12 3.1 Concept 12 3.2 Energy-Efficient Scheduling Algorithm 13 3.3 Procedure of the Energy-Efficient Scheduling Algorithm 15 4 Performance Evaluation 17 4.1 Performance on Energy Consuming Ratio 19 4.2 Performance on Data Aborted Ratio 21 5 Conclusion 23 Bibliography 24

    [1] L. Shi and A. Fapojuwo TDMA Scheduling with Optimized Energy Efficiency and Minimum Delay in Clustered Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 9(7):927-940, July 2010.
    [2] R. Srivastava and C.E.Koksal Energy optimal transmission scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 9(5):1550-1560, May 2010.
    [3] J. Wang, D. Li, G. Xing and H. Du Cross-Layer Sleep Scheduling Design in Service-Oriented Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 9(11):1622-1633, November 2010.
    [4] H.-L. Fu, H.-C. Chen, P. Lin and Y. Fang Energy-efficient reporting mechanisms for multi-type real-time monitoring in Machine-to-Machine communications networks. Proceedings IEEE INFOCOM, 136-144, 2012.
    [5] C.-K. Lin, V. Zadorozhny,P. Krishnamurthy and H.-H. Park and C.-G. Lee A Distributed and Scalable Time Slot Allocation Protocol for Wireless Sensor Networks. IEEE Transactions on Mobile Computing, 10(4):505-518, April 2011.
    [6] 3GPP. 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; GERAN improvements for Machine-Type Communications (MTC)(Release 12). Technical Specification 3G TR 43.868 version 12.0.0(2012-11), 2012.
    [7] M. Caccamo, L.-Y. Zhang, S. Lui, and G. Buttazzo An implicit prioritized access protocol for wireless sensor networks. IEEE Real-Time Systems Symposium, 39-48, 2002.
    [8] C.-L. Liu, and J.W. Layland Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46-61, January 1973.
    [9] J.C.R. Bennett, and H. Zhang WF2Q: worst-case fair weighted fair queueing. Proceedings IEEE INFOCOM, 20:120-128, March 1996.
    [10] R. Jain, D. Chiu, and W. Hawe A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report TR-301, September 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE