研究生: |
莊郁凡 Chuang, Yu-Fan |
---|---|
論文名稱: |
輻射應力與溶劑對高分子材料結構的影響 Effect of Irradiation/Stress/Solvent on Structures of Polymeric Materials |
指導教授: |
李三保
Lee, Sanboh |
口試委員: |
鄒若齊
Tsou, Ruo-Chi 侯春看 Hou, Chuen-Kan 林清彬 Lin, Chin-Bin 蔣東堯 Chiang, Don-Yao |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 195 |
中文關鍵詞: | 聚二甲基丙烯酸羥乙酯 、聚二甲基矽氧烷 、質傳 、紫外光照射 、皺波結構 、漣漪差排 、滑移 、結晶動力學 、溶劑引發裂縫 |
外文關鍵詞: | PMMA, PHEMA, Mass transport, UV irradiated, Wrinkle structure, Ripple dislocation, Slip, Dynamic of crystallization, Solvent induced crack |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討輻射、溶劑與應力對高分子材料結構的影響,主要為探討高分子材料在受到輻射、溶劑與應力時,如何使材料結構產生變化,進而降低自由能,包含產生結晶,使分子鏈重新排列,消耗所獲得的熱能,產生表面結構進而抵銷表層與基材間材料性質的差異,改變分子鏈間距以容納溶劑的進入,以及在無法承受所被施加的應力時,形成表面裂縫,釋放其應力,內容包括以下四部分:
第一部分研究(第二章)未照射與照射紫外光的聚甲基丙烯酸羥乙酯(PHEMA)在去離子水內的質傳行為,其中使用Harmon模型對實驗結果進行模擬,實驗結果顯示去離子水在未照射與照射紫外光PHEMA的質傳行為是非常態的擴散(Anomalous diffusion),同時包含Case I的擴散與Case II質傳,其中Case I擴散主要受由濃度梯度影響,而Case II質傳則是受高分子鏈是否容易應力鬆弛影響,而隨著劑量上升PHEMA Case I活化能與Case II活化能皆會上升,並使用DSC與FTIR觀察PHEMA在照射紫外光前後,玻璃轉換溫度與官能基的變化,實驗結果顯示,當照射紫外光會使PHEMA玻璃轉換溫度下降,且C=O與C-O鍵結強度下降,代表PHEMA產生斷鍵,第二部分探討不同紫外光照射劑量的PHEMA在吸收去離子水後,其表面在解吸(Desorption)後形成皺波的機制,由於照射紫外光後,會在表面形成表層薄膜(Skin layer),其薄膜受紫外光影響而產生斷鍵,降低表層的楊氏係數,而在解吸過程中,表層薄膜解吸速度較快,而基材則會較慢,因此會在界面處形成張應力,並在表面形成皺波結構,其皺波的特徵波長(Characteristic wavelength, λc)會使用美國國家衛生研究院(National Insitute Health in USA, NIH)的開放軟體Image J,對皺波結構的OM圖進行傅立葉轉換,求出波數與波長,實驗結果顯示,初次浸泡時間越長、照射紫外光劑量越大或浸泡的去離子水溫度越高,皆會使皺波的特徵波長越大,另外,重複浸泡會使高分子膨潤而使分子鏈應力鬆弛,使得皺波特徵波長變大。
第二部分研究(第三章)聚二甲基矽氧烷/金複合材料在預拉伸應變(Prestrain)回復後,其表面漣漪結構(Ripple structure)與其缺陷漣漪差排(Ripple dislocations)在受到不同角度之壓縮應變時,其漣漪差排的運動行為,其結果顯示,漣漪結構會出現與金屬差排滑移類似的行為,漣漪差排會離開初始位置並連結到鄰近的漣漪結構上,並改變經過之漣漪結構的方向,使其較為垂直壓縮應變,其滑移距離與時間之關係會使用牛頓運動定律進行模擬。當壓縮應變與預拉伸應變夾角越大與增加壓縮應變時,會對漣漪差排造成較大的剪應力,因此其滑移距離增長與滑移速度增快,而溫度上升會使高分子黏度下降,使漣漪差排滑移變得容易,此外,由DMA進行鍍金後的PDMS的應力鬆弛與潛變實驗,並使用Standard solid linear model進行模擬後,亦發現當溫度上升時,會使鍍金後PDMS的楊氏係數與黏度下降,與使用牛頓運動定律模擬漣漪差排滑移的結果相似。而增加預拉伸應變時,會使儲存較大的殘留應力在漣漪結構上,漣漪波長會變短,因此會使漣漪差排所需的臨界剪應力上升。
第三部分(第四章)則研究聚丁二酸二乙酯(Polyehtylene succinate, PESu)經過γ-ray照射後的結晶動力學,以Avrami equation分析DSC結晶放熱峰與時間之關係,將其轉換成相對結晶度與時間的關係圖,並使用Avrami plot求出速率常數(Rate constant)、Avrami指數與半結晶期,發現各個γ-ray劑量PESu的速率常數會在35 oC達到最大值,但當γ-ray照射劑量上升時,結晶常數下降,由於結晶的活化能並無法藉由速率常數或半結晶期直接獲得,因此會使用Lauritzen Hoffman theory分析PESu的結晶動力學,發現在30 oC~70 oC的等溫結晶溫度中會有Rigime II 往Rigime III的轉換出現,即由成核速率與結晶成長速率相當的狀態轉換成以成核速率主導的狀況,且其轉換溫度會隨著劑量增加而降低,結晶活化能也會隨劑量增加而上升。另外,在真空中照射γ-ray的對位聚苯乙烯(Syndiotactic Polystyrene, sPS),其相對結晶度隨結晶時間的變化,則是藉由DSC獲得其不同結晶時間的β’與β相的結晶後,搭配Avrami方程式進行轉換,並使用Avrami plot求出結晶常數與Avrami指數,發現隨著照射γ-ray劑量越大,其結晶常數越小且半結晶期越長,為了獲得真空照射γ-ray sPS的結晶活化能,此部分使用修正後的Lauritzen Hoffman模型分析sPS內 β與β’結晶相所需克服的能障與其熱力學驅動力,結果顯示當照射劑量越大,β與β’結晶相的活化能與所需的熱力學驅動力也會上升。
第四部份(第五章)則探討二乙基己醇(2-Ethyl hexonal)對吸收甲醇的PMMA的解吸產生裂縫的機制及其官能基的變化,由FTIR的結果可以看到PMMA內源自甲醇的C-O、C-H與O-H鍵結所對應的訊號強度皆隨著浸泡聚二乙基醇而下降,且隨著浸泡甲醇溫度上升,裂縫數量下降,浸泡甲醇的時間增長亦會使表面裂縫數目下降,相反的浸泡二乙基醇越久,則會使表面裂縫增加。
The effects of irradiation/solvent/stress on structures of polymeric materials is studied. Here, we discuss how the structures of polymeric materials change after the materials are immersed in solvent or applied stress. The materials might crystallized、produce surface structure、change the interval of polymer chains or occur surface cracks to reduce the free energy.
In the chapter 2, the mass transport of non-irradiated and UV-irradiated PHEMA in distill water is studied. The Harmon model is applied to simulate the experimental results of mass transport. The result show that the mass transport of non-irradiated and UV irradiated PHEMA in DI water is anomalous diffusion which include Case I transport and Case II transport at the same time. The Case I transport is dominated by concentration gradient of solvent, the Case II transport is dominated by stress relaxation of polymer chains. The diffusion coefficient and the velocity for the Case I and Case II transport follow the Arrhenius equation. The activation energies of Case I and Case II transport increase with increasing UV doses. Moreover, the DSC and FTIR is applied to analyze the glass transition temperature and function group for non-irradiated and UV-irradiated PHEMA. The results show that the glass transition temperature and the bonding intensities of C=O and C-O decrease with increasing UV doses, it means that the PHEMA produce chain scission after UV-irradiated. In the second part of chapter 2, the effect of UV irradiation on solvent induced surface wrinkle of PHEMA is investigated. The surface wrinkle of PHEMA is induced by desorption of DI water when DI water escape from the PHEMA sample. Because the DI water in UV-irradiated layer desorbed first, It caused much bigger deformation than non-irradiated section of PHEMA and induce the interfacial tensile stress between the UV-irradiated layer and non-irradiated section of PHEMA. Here, we use the Image J (NIH) to analyze the characteristic wavelength of surface wrinkle. The Image J can transform the OM images of surface wrinkle into reciprocal space by Fourier transform, so that we can find the wavenumber of surface wrinkle and calculate the wavelength by modify Bragg’s equation. The result show that the characteristic wavelength increases, as the increase of UV doses, temperature of DI water and the first immersion time in DI water increase. In addition, the characteristic wavelength increases as increasing total immersion time in DI water due to the stress relaxation caused by swelling.
In the chapter 3, the slip of ripple dislocations on PDMS/Au bilayer structure surface is studied. A 5 nm gold layer is sputtered on a pre-strained PDMS, then the ripple structure and its defects like ripple dislocations and cracks appear on the Au/PDMS surface after the pre-strain of PDMS is released. Here, we applied compression strain with different direction from the pre-strain to observe the slip of ripple dislocations. The ripple dislocation connect to nearby ripple structure and change the alignment of ripple structure when it passes through. The Newton’s law is applied to simulate the moving ripple dislocations. When the angle between compression strain and pre-strain direction increases, it causes much bigger shear stress on ripple dislocations, and the velocity of ripple dislocations increases. When the temperature increases, the viscosity of PDMS decreases and makes the slip of ripple dislocation easier. In addition, the creep and stress relaxation test of Au/PDMS are measured by DMA. We use standard solid linear model to derive the creep and stress relaxation model. The viscosity and young’s modulus with different temperature can be determined from the simulation parameters of creep and stress relaxation model. The results show that the viscosity and Young’s modulus increase with increasing temperature, which is similar to the result of the moving ripple dislocations from Newton law. The ripple wavelength decreases when the pre-strain is increased, which might store more residual stress on ripple structure and increase the critical shear stress for ripple dislocations.
In the chapter 4, the isothermal crystallization kinetic of gamma-irradiated polymer is studied. This chapter can be individed into 2 sections. In the first section, we study the isothermal crystallization kinetic of gamma-irradiated PESu. The PESu samples are irradiated in air with γ-ray at various doses from 0 to 600 kGy, and isothermal crystallized at different temperatures and times. The Avrami equation is applied to calculate the relative crystallization at different times and γ-ray doses from the crystallization exothermic peak of DSC thermograms. After that the rate constant, Avrami exponent and half-life crystallization can be determined by Avrami plot. The results show that the rate constant has maximum at 35 oC, but decreases with increasing γ-ray doses. Because the activation energy of isothermal crystallization cannot be determined by rate constant, the Lauritzen Hoffman theory is applied to analyze the isothermal crystallization kinetic of irradiated and non-irradiated PESu. We find that there are regime transition from regime II to regime III between 30 oC to 70 oC, which means that the rate control has a transition from compatible between nucleation and grow rate to dominate nucleation rate. In addition, the activation energy of isothermal crystallization on PESu and the transition temperature from regime II to regime III increases as increasing γ-ray dose. In the second section, the isothermal crystallization kinetics of γ-ray irradiated sPS is studied by DSC. The sPS sample is irradiated in vacuum with γ-ray at various doses from 0 to 800 kGy, and melt-crystallized at different times and temperatures. We apply the Avrami equation to transform the multiple endothermic melting peaks from DSC at different times to the relative crystallization of β and β’ form at different times. After that the Avrami exponent and rate constant can be determined from the slope and intercept of Avrami plot, respectively. The result shows that the rate constant decrease and the half-life crystallization increase with increasing γ-ray dose. Here, the modified Lauritzen Hoffman model is applied to calculate the activation energy and thermodynamic driving force of crystallization. The results show that the activation energy and thermodynamic driving force increase with increasing γ-ray dose.
In the chapter 5, the solvent induced cracks on PMMA surface is studied. After the PMMA absorbs in methanol at different temperatures and times, the PMMA is immersed in the 2EA to desorb methanol, and it causes the cracks on PMMA surface. The FTIR is applied to observe the function groups change of PMMA during the absorption/desorption process. The results show that the C-O、C-H and O-H bonding, which relate to methanol, decrease after immersing in 2EA. The number of cracks decrease with increasing temperature and immersion time of methanol. In contrast, the number of cracks increases with increasing immersion time in 2EA.
參考文獻
1. S. Raghu, K. Archana, C. Sharanappa, S. Ganesh, H. Devendrappa, Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties. Journal of Radiation Research and Applied Sciences 9, pp. 117-124 (2016).
2. I. Enomoto, Y. Katsumura, H. Kudo, S. Soeda, Graft polymerization using radiation-induced peroxides and application to textile dyeing. Radiation Physics and Chemistry 80, pp. 169-174 (2011).
3. S. D. Burow, D. T. Turner, G. F. Pezdirtz, G. D. Sands, γ-Irradiation of poly(ethylene terephthalate). I. Yields of gas and carboxyl groups. Journal of Polymer Science Part A-1: Polymer Chemistry 4, pp. 613-622 (1966).
4. K. L. Mittal. Polymer Surface Modification: Relevance to Adhesion, Vol. 4. CRC Press, Toronto, 36-38, 2007.
5. E. Reichmanis, C. W. Frank, J. H. O’Donnell, D. J. T. Hill. Irradiation of Polymeric Material, American Chemical Society, Washington D. C., USA, 1993.
6. M. Prober, Division of Organic Chemical 132nd American Chemical Society Meeting, New York, N.Y., Sept. 8 to 13, 1957.
7. A. Chapiro, Action des rayons Y sur les polymères à l'état solide-I.-Réticulation du Polyéthylène. Journal de Chimie Physique 52, pp. 246-258 (1955).
8. E. J. Lawton, J. S. Balwit, R. S. Powell, Effect of physical state during the electron irradiation of hydrocarbon polymers. Part I. The influence of physical state on reactions occurring in polyethylene during and following the irradiation. Journal of Polymer Science 32, pp. 257-275 (1958).
9. Q. Zhang, J. Yin, Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. Journal of the Mechanics and Physics of Solids 118, pp. 40-57 (2018).
10. Y. Sun, L. Yan, C. Li, B. Chen, Evolution of wrinkles with spiral crack on stiff film/compliant substrate under controllable micro-probe loading. Applied Surface Science 455, pp. 37-44 (2018).
11. H. T. Evensen, H. Jiang, K. W. Gotrik, F. Denes, R. W. Carpick, Transformations in Wrinkle Patterns: Cooperation between Nanoscale Cross-Linked Surface Layers and the Submicrometer Bulk in Wafer-Spun, Plasma-Treated Polydimethylsiloxane. Nano Letters 9, pp. 2884-2890 (2009).
12. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, pp. 146-149 (1998).
13. A. Luciani, C. J. G. Plummer, R. Gensler, J.-A. E. Månson, Surface pattern formation in UV-curable coatings. Journal of Coatings Technology 72, pp. 161-163 (2000).
14. R. Wang, Y. Long, T. Zhu, J. Guo, C. Cai, N. Zhao, J. Xu, Fabrication of oriented wrinkles on polydopamine/polystyrene bilayer films. Journal of Colloid and Interface Science 498, pp. 123-127 (2017).
15. P. J. Yoo, Fabrication of complexly patterned wavy structures using self-organized anisotropic wrinkling. Electronic Materials Letters 7, pp. 17-23 (2011).
16. M. Dietzel, S. M. Troian, Formation of Nanopillar Arrays in Ultrathin Viscous Films: The Critical Role of Thermocapillary Stresses. Physical Review Letters 103, pp. 074501 (2009).
17. S. Y. Chou, L. Zhuang, Lithographically induced self-assembly of periodic polymer micropillar arrays. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 17, pp. 3197-3202 (1999).
18. R. Verma, A. Sharma, K. Kargupta, J. Bhaumik, Electric Field Induced Instability and Pattern Formation in Thin Liquid Films. Langmuir 21, pp. 3710-3721 (2005).
19. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, U. Steiner, Electrically induced structure formation and pattern transfer. Nature 403, pp. 874-877 (2000).
20. J. S. Peng, F. Yang, D. Chiang, S. Lee, Kinetics of Field-Induced Surface Patterns on PMMA. Langmuir 32, pp. 4602-4609 (2016).
21. N. E. Voicu, S. Harkema, U. Steiner, Electric‐Field‐Induced Pattern Morphologies in Thin Liquid Films. Advanced Functional Materials 16, pp. 926-934 (2006).
22. M. Watanabe, Wrinkles with a well-ordered checkerboard pattern, created using dip-coating of poly(methyl methacrylate) on a UV-ozone-treated poly(dimethylsiloxane) substrate. Soft Matter 8, pp. 1563-1569 (2012).
23. M. Guvendiren, J. A. Burdick, S. Yang, Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 6, pp. 5795-5801 (2010).
24. K. H. Suk, A. J. Crosby, Solvent‐Responsive Surface via Wrinkling Instability. Advanced Materials 23, pp. 4188-4192 (2011).
25. X. Xiuli, W. Shibin, Z. Chaofeng, L. Linan, L. Chuanwei, Solvent‐induced surface instability of thin metal films on a polymer substrate. Surface and Interface Analysis 50, pp. 180-187 (2018).
26. C. Dinesh, A. J. Crosby, Self‐Wrinkling of UV‐Cured Polymer Films. Advanced Materials 23, pp. 3441-3445 (2011).
27. K. F. Chou, C. C. Han, S. Lee, Water transport in 2-hydroxyethyl methacrylate copolymer irradiated by γ rays in air and related phenomena. Journal of Polymer Science Part B: Polymer Physics 38, pp. 659-671 (2000).
28. L. Seungae, H. Jin-Yong, J. Jyongsik, The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polymer International 62, pp. 901-908 (2013).
29. C. M. Stafford, B. D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Elastic Moduli of Ultrathin Amorphous Polymer Films. Macromolecules 39, pp. 5095-5099 (2006).
30. P.-C. Lin, S. Vajpayee, A. Jagota, C.-Y. Hui, S. Yang, Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matter 4, pp. 1830-1835 (2008).
31. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nature Photonics 4, pp. 222-226 (2010).
32. H. Izawa, N. Okuda, T. Yonemura, K. Kuroda, K. Ochi, S. Ifuku, M. Morimoto, H. Saimoto, M. Noda, K. Azuma, Y. Okamoto, N. Ito, Application of Bio-Based Wrinkled Surfaces as Cell Culture Scaffolds. Colloids and Interfaces 2, pp. 15 (2018).
33. J. M. Seidel, S. M. Malmonge, Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Materials Research 3, pp. 79-83 (2000).
34. E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6, pp. 105-121 (2015).
35. T. Ogata, K. Nagayoshi, T. Nagasako, S. Kurihara, T. Nonaka, Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. Reactive and Functional Polymers 66, pp. 625-633 (2006).
36. Y. Masubuchi, K. Watanabe, W. Nagatake, J. I. Takimoto, K. Koyama, Thermal analysis of shear induced crystallization by the shear flow thermal rheometer: isothermal crystallization of polypropylene. Polymer 42, pp. 5023-5027 (2001).
37. A. M. Mathur, S. K. Moorjani, A. B. Scranton, Methods for Synthesis of Hydrogel Networks: A Review. Journal of Macromolecular Science, Part C 36, pp. 405-430 (1996).
38. Y. Ikada, T. Mita, F. Horii, I. Sakurada, M. Hatada, Preparation of hydrogels by radiation technique. Radiation Physics and Chemistry (1977) 9, pp. 633-645 (1977).
39. P. M. Kharkar, K. L. Kiick, A. M. Kloxin, Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions. Polymer chemistry 6, pp. 5565-5574 (2015).
40. N. A. Peppas, D. S. Van Blarcom, Hydrogel-based biosensors and sensing devices for drug delivery. Journal of Controlled Release 240, pp. 142-150 (2016).
41. I. Y. Jung, J. S. Kim, B. R. Choi, K. Lee, H. Lee, Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes. Advanced Healthcare Materials 6, pp. 1601475 (2017).
42. B. Jeong, Y. H. Bae, S. W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. Journal of Controlled Release 63, pp. 155-163 (2000).
43. K. J. Lim, M. J. Shon, S. B. Yoo, S. I. Lee, J. H. OH, S. W. Lee, H. C. Kim, Immunoassay And Diagnostic Reagent For Malaria, EP 1255852 B1, Dec. 10, 2008
44. J. Koehler, F. P. Brandl, A. M. Goepferich, Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal 100, pp. 1-11 (2018).
45. K. R. Shah, A. Kydonieus, K. Jamshidi, S. C. Decker, T. L. Chang, Thermoplastic hydrogel impregnated composite material, US5527271A, June 18, 1996
46. G. Grassi, R. Farra, P. Caliceti, G. Guarnieri, S. Salmaso, M. Carenza, M. Grassi, Temperature-sensitive hydrogels. American Journal of Drug Delivery 3, pp. 239-251 (2005).
47. E. Mah, R. Ghosh, Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes. Processes 1, pp. 238-262 (2013).
48. T. Still, Y. P. J., K. Hanson, Z. S. Davidson, M. A. Lohr, K. B. Aptowicz, A. G. Yodh, Temperature-Sensitive Hydrogel-Particle Films from Evaporating Drops. Advanced Materials Interfaces 2, pp. 1500371 (2015).
49. Y. Zhao, C. Shi, X. Yang, B. Shen, Y. Sun, Y. Chen, X. Xu, H. Sun, K. Yu, B. Yang, Q. Lin, pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes. ACS Nano 10, pp. 5856-5863 (2016).
50. M. Rizwan, R. Yahya, A. Hassan, M. Yar, A. Azzahari, V. Selvanathan, F. Sonsudin, C. Abouloula, pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 9, pp. 137 (2017).
51. J. Siepmann, F. Siepmann, Modeling of diffusion controlled drug delivery. Journal of Controlled Release 161, pp. 351-362 (2012).
52. K. V. Ranga Rao, K. Padmalatha Devi, Swelling controlled-release systems: recent developments and applications. International Journal of Pharmaceutics 48, pp. 1-13 (1988).
53. S. Mercedes, G.-O. Constancio, O. Doriana, R. Eduardo Perez del, J. A. Francisco, Advanced Systems for Controlled Drug Delivery from Chemically Modified Elastin-like Recombinamers. Current Organic Chemistry 21, pp. 21-33 (2017).
54. R. Rossin, R. M. Versteegen, J. Wu, A. Khasanov, H. J. Wessels, E. J. Steenbergen, W. ten Hoeve, H. M. Janssen, A. H. A. M. van Onzen, P. J. Hudson, M. S. Robillard, Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. Nature Communications 9, pp. 1484 (2018).
55. B. Huang, F. Chen, Y. Shen, K. Qian, Y. Wang, C. Sun, X. Zhao, B. Cui, F. Gao, Z. Zeng, H. Cui, Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology. Nanomaterials 8, pp. 102 (2018).
56. T. Alfrey Jr, E. F. Gurnee, W. G. Lloyd, Diffusion in glassy polymers. Journal of Polymer Science Part C: Polymer Symposia 12, pp. 249-261 (1966).
57. L. Suryanegara, A. N. Nakagaito, H. Yano, The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Composites Science and Technology 69, pp. 1187-1192 (2009).
58. M. K. Hassan, M. Cakmak, Strain-Induced Crystallization during Relaxation Following Biaxial Stretching of PET Films: A Real-Time Mechano-Optical Study. Macromolecules 48, pp. 4657-4668 (2015).
59. H. Ouyang, W.-H. Lee, W. Ouyang, S.-T. Shiue, T.-M. Wu, Solvent-Induced Crystallization in Poly(ethylene terephthalate) during Mass Transport: Mechanism and Boundary Condition. Macromolecules 37, pp. 7719-7723 (2004).
60. L. Li, C. Y. Li, C. Ni, Polymer Crystallization-Driven, Periodic Patterning on Carbon Nanotubes. Journal of the American Chemical Society 128, pp. 1692-1699 (2006).
61. S. Zhou, W. Wang, Z. Xin, S. Zhao, Y. Shi, Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene. Journal of Materials Science 51, pp. 5598-5608 (2016).
62. H. Wang, J. K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski, A. Galeski, Confined Crystallization of Polyethylene Oxide in Nanolayer Assemblies. Science 323, pp. 757-760 (2009).
63. J. K. Rao, D. V. Ramesh, K. P. Rao, Implantable controlled delivery systems for proteins based on collagen — pHEMA hydrogels. Biomaterials 15, pp. 383-389 (1994).
64. Y. S. Casadio, D. H. Brown, T. V. Chirila, H.-B. Kraatz, M. V. Baker, Biodegradation of Poly(2-hydroxyethyl methacrylate) (PHEMA) and Poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} Hydrogels Containing Peptide-Based Cross-Linking Agents. Biomacromolecules 11, pp. 2949-2959 (2010).
65. H.-J. Kim, G.-C. Ryu, K.-S. Jeong, J. Jun, Hydrogel lenses functionalized with polysaccharide for reduction of protein adsorption. Macromolecular Research 23, pp. 74-78 (2015).
66. J. Tavakoli, Y. Tang, Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers 9, pp. 364 (2017).
67. W. Zhao, Z. Shi, X. Chen, G. Yang, C. Lenardi, C. Liu, Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression. Composites Part B: Engineering 76, pp. 292-299 (2015).
68. H. U. Zaman, M. A. Khan, R. A. Khan, Studies on the Thermo-Mechanical Properties of Gelatin Based Films Using 2-Hydroxyethyl Methacrylate by Gamma Radiation. Open Journal of Composite Materials Vol.02, pp. 15-21 (2012).
69. E. P. da Silva, M. R. Guilherme, F. P. Garcia, C. V. Nakamura, L. Cardozo-Filho, C. G. Alonso, A. F. Rubira, M. H. Kunita, Drug release profile and reduction in the in vitro burst release from pectin/HEMA hydrogel nanocomposites crosslinked with titania. RSC Advances 6, pp. 19060-19068 (2016).
70. R. M. Trigo, M. D. Blanco, J. M. Teijón, R. Sastre, Anticancer drug, ara-C, release from pHEMA hydrogels. Biomaterials 15, pp. 1181-1186 (1994).
71. F. Ye, J. Jiang, H. Chang, L. Xie, J. Deng, Z. Ma, W. Yuan, Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA). Biomicrofluidics 9, pp. 044106 (2015).
72. T.-L. Tsou, S.-T. Tang, Y.-C. Huang, J.-R. Wu, J.-J. Young, H.-J. Wang, Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies. Journal of Materials Science: Materials in Medicine 16, pp. 95-100 (2005).
73. Z. Di, Z. Shi, M. W. Ullah, S. Li, G. Yang, A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). International Journal of Biological Macromolecules 105, pp. 638-644 (2017).
74. J. Kumari, A. Kumar, Development of polymer based cryogel matrix for transportation and storage of mammalian cells. Scientific Reports 7, pp. 41551 (2017).
75. N. Bölgen, P. Korkusuz, İ. Vargel, E. Kılıç, E. Güzel, T. Çavuşoğlu, D. Uçkan, E. Pişkin, Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects. Artificial Cells, Nanomedicine, and Biotechnology 42, pp. 70-77 (2014).
76. T. Kajisa, T. Sakata, Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Science and Technology of Advanced Materials 18, pp. 26-33 (2017).
77. T. S. Perova, J. K. Vij, H. Xu, Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA. Colloid and Polymer Science 275, pp. 323-332 (1997).
78. G. P. López, D. G. Castner, B. D. Ratner, XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surface and Interface Analysis 17, pp. 267-272 (1991).
79. J. P. Harmon, S. Lee, J. C. M. Li, Methanol transport in PMMA: The effect of mechanical deformation. Journal of Polymer Science Part A: Polymer Chemistry 25, pp. 3215-3229 (1987).
80. J. P. Harmon, S. Lee, J. C. M. Li, Anisotropic methanol transport in PMMA after mechanical deformation. Polymer 29, pp. 1221-1226 (1988).
81. T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, T. Amiya, Mechanical instability of gels at the phase transition. Nature 325, pp. 796-798 (1987).
82. M. Guvendiren, S. Yang, J. A. Burdick, Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density. Advanced Functional Materials 19, pp. 3038-3045 (2009).
83. D. Chiang, F. Yang, C. W. Liu, K.-C. Ho, S. Lee, Methanol desorption in poly(methyl methacrylate) with stress distributions. Journal of Materials Research 29, pp. 2162-2169 (2014).
84. M. Srisa-Art, S. D. Noblitt, A. T. Krummel, C. S. Henry, IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics. Analytica Chimica Acta 1021, pp. 95-102 (2018).
85. M. V. Barich, A. T. Krummel, Polymeric Infrared Compatible Microfluidic Devices for Spectrochemical Analysis. Analytical Chemistry 85, pp. 10000-10003 (2013).
86. B. Lehmkuhl, S. D. Noblitt, A. T. Krummel, C. S. Henry, Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2. Lab on a Chip 15, pp. 4364-4368 (2015).
87. P. Carlberg, L. Montelius, J. Tegenfeldt, Nanoimprint in PDMS on glass with two-level hybrid stamp. Microelectronic Engineering 85, pp. 210-213 (2008).
88. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, R. S. Williams, Hybrid Nanoimprint−Soft Lithography with Sub-15 nm Resolution. Nano Letters 9, pp. 2306-2310 (2009).
89. B. Gorissen, C. Van Hoof, D. Reynaerts, M. De Volder, SU8 etch mask for patterning PDMS and its application to flexible fluidic microactuators. Microsystems &Amp; Nanoengineering 2, pp. 16045 (2016).
90. C. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3, pp. 1530-1536 (2007).
91. H. D. Choon, M. G. Dae, C. E. Chul, J. Unyong, Repeated Transfer of Colloidal Patterns by Using Reversible Buckling Process. Advanced Functional Materials 19, pp. 2155-2162 (2009).
92. T. Ohzono, M. Shimomura, Ordering of microwrinkle patterns by compressive strain. Physical Review B 69, pp. 132202 (2004).
93. T. Ohzono, M. Shimomura, Defect-mediated stripe reordering in wrinkles upon gradual changes in compression direction. Physical Review E 73, pp. 040601 (2006).
94. M. Avrami, Kinetics of Phase Change. I General Theory. The Journal of Chemical Physics 7, pp. 1103-1112 (1939).
95. M. Avrami, Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei. The Journal of Chemical Physics 8, pp. 212-224 (1940).
96. M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III. The Journal of Chemical Physics 9, pp. 177-184 (1941).
97. S. Andrea, P. Roberto, T. Giuseppe, Two-phase crystallization kinetics of syndiotactic polystyrene. Journal of Polymer Science Part B: Polymer Physics 48, pp. 1757-1766 (2010).
98. J. Yu, J. He, Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer 41, pp. 891-898 (2000).
99. C.-H. Su, W.-R. Wu, C.-Y. Chen, C.-J. Su, W.-T. Chuang, K.-F. Liao, S.-H. Chen, A.-C. Su, U. S. Jeng, Nanograin nucleation at the growth front in melt crystallization of syndiotactic polystyrene. Polymer 105, pp. 414-421 (2016).
100. M. Puchalski, S. Kwolek, G. Szparaga, M. Chrzanowski, I. Krucińska, Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 9, pp. 18 (2017).
101. J. Andrzej, Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19, pp. 1142-1144 (1978).
102. J. Moitzi, P. Skalicky, Shear-induced crystallization of isotactic polypropylene melts: isothermal WAXS experiments with synchrotron radiation. Polymer 34, pp. 3168-3172 (1993).
103. J. Wang, J. Bai, Y. Zhang, H. Fang, Z. Wang, Shear-induced enhancements of crystallization kinetics and morphological transformation for long chain branched polylactides with different branching degrees. Scientific Reports 6, pp. 26560 (2016).
104. C. Silvestre, M. Pezzuto, D. Duraccio, G. R. Mitchell, S. Cimmino, Quiescent and shear-induced non-isothermal crystallization of isotactic polypropylene-based nanocomposites. Polymer Bulletin 74, pp. 145-165 (2017).
105. J. John I. Lauritzen, J. D. Hoffman, Theory of Formation of Polymer Crystals with Folded Chains in Dilute Solution JOURNAL OF RESEARCH of the National Bureau of Standards-A. Physics and Chemistry 64A, pp. 73-102 (1960).
106. R. D. Wesson, Melt crystallization kinetics of syndiotactic polystryrene. Polymer Engineering & Science 34, pp. 1157-1160 (1994).
107. Y.-C. Chou, The effect of Gamma-ray Irradiation on Isothermal Crystallization of Poly(Ethylene Succinate), Master thesis, National Tsing Hua University, Taiwan, (2011).
108. S. S. Lawrence, D. M. Shinozaki, Crystallization of syndiotactic polystyrene. Polymer Engineering & Science 37, pp. 1825-1832 (1997).
109. Y.-W. Ting, The Isothermal Crystallization Behaviior of Gamma-ray Irradiation Syndiotactic Polystyrene, Master thesis, National Tsing Hua University, (1998).
110. P. C. Hiemenz, L. P. Timothy. Polymer Chemistry, Second Edition. CRC Press Boca Raton, 336-339, 2007.
111. K. Chrissafis, K. M. Paraskevopoulos, D. N. Bikiaris, Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly(ethylene succinate). Thermochimica Acta 440, pp. 166-175 (2006).
112. H.-R. Hsu, W. Cao, F. Yang, S. Lee, Methanol-assisted crack healing in UV-irradiated poly(methyl methacrylate). Journal of Polymer Research 24, pp. 179 (2017).
113. A. Yoshioka, K. Tashiro, Solvent Effect on the Glass Transition Temperature of Syndiotactic Polystyrene Viewed from Time-Resolved Measurements of Infrared Spectra at the Various Temperatures and Its Simulation by Molecular Dynamics Calculation. Macromolecules 37, pp. 467-472 (2004).
114. Y.-W. Mai, Environmental stress cracking of glassy polymers and solubility parameters. Journal of Materials Science 21, pp. 904-916 (1986).
115. D. W. V. Krevelen, K. T. Nijenhuis. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th Edition. Elsevier Science, 2009.
116. H. Parvatareddy, J. G. Dillard, J. E. McGrath, D. A. Dillard, Solvent Effects on High Temperature Polyimides and their Bonded Joints. The Journal of Adhesion 69, pp. 83-98 (1999).
117. K. Kuboyama, T. Ougizawa, Solvent Induced Cracking and Morphology in Banded Spherulite of Poly(trimethylene terephthalate). Polymer Journal 40, pp. 1005-1009 (2008).
118. C. B. Lin, S. Lee, K. S. Liu, Methanol-Induced crack healing in poly(methyl methacrylate). Polymer Engineering & Science 30, pp. 1399-1406 (1990).
119. K. Mphahlele, S. S. Ray, A. Kolesnikov, Self-Healing Polymeric Composite Material Design, Failure Analysis and Future Outlook: A Review. Polymers 9, pp. 535 (2017).
120. N. A. Sirajuddin, M. S. Md Jamil, M. A. S. Mat Lazim, Effect of ph buffer on self-healing hydrogel. Malaysian Journal of Analytical Sciences 19, pp. 445-453 (2015).
121. R. Peng, D. Li, Fabrication of nanochannels on polystyrene surface. Biomicrofluidics 9, pp. 024117 (2015).
122. F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, N. Pugno, Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Progress in Materials Science 83, pp. 536-573 (2016).
123. W.-L. Wang, J. R. Chen, S. Lee, Solvent-induced stresses in glassy polymer: Elastic model. Journal of Materials Research 14, pp. 4111-4118 (1999).
124. D. R. G. Williams, P. E. M. Allen, T. Van Tan, Glass transition temperature and stress relaxation of methanol equilibrated poly(methyl methacrylate). European Polymer Journal 22, pp. 911-919 (1986).