研究生: |
張雅筑 |
---|---|
論文名稱: |
常壓下以電暈方式製備奈米碳管或奈米結構 Producing Carbon Nanotubes or Nanostructures by Corona Discharge at Atmosphere |
指導教授: | 徐文光 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 奈米碳管 、電暈 、常壓 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般奈米碳管的製備大多使用的方法為碳氫化合物的熱裂解、石墨電弧放電法、雷射蒸發法和化學氣相沉積法。上述幾種方法皆需要一個真空腔體,相對的實驗成本也較高、製程較複雜。本實驗使用特斯拉棒,在自然界環境中實驗(常壓下),不需要爐管或真空腔體,並且比較了許多不同的實驗方法和條件,成功的找到在鋁片上滴上五環鐵(ferrocene)的甲苯溶液,以特斯拉棒電擊20秒左右,在掃描式電子顯微鏡(SEM)下發現有奈米碳管產生,只是產量非常地少。經過一連串檢討改進後,發現在鋅片上滴上五環鐵的甲苯溶液,通入氬氣,透過筆心以特斯拉棒電擊數十秒,在SEM下亦發現碳管,並且透過拉曼光譜、質譜儀和穿透式電子顯微鏡等儀器的檢驗,成功地解釋奈米碳管的成長機制與發現為何本實驗碳管產量不高的原因。
The common methods of producing carbon nanotubes are pyrolysis of hydrocarbons, arc discharge of graphite, chemical vapor deposition and laser ablation of graphite. The various ways stated above all require a vacuum chamber, and therefore, the cost for experiments is presumedly higher and the process much complicated. We use a Tesla coil for our experiments at atmosphere instead of a vacuum chamber. Comparing with many different ways and conditions, we successfully pulled off a experiment by way of dropping some ferrocene toluene solution on a small slice of aluminum and arcing it about twenty seconds. We find carbon nanotubes under the scanning electron microscope, only that the production is relatively small. Though a lot of discussions and improvements, we drop some ferrocene toluene solution on a small slice of zinc and arc it by a pencil lead about twenty seconds in argon atmosphere. We also find carbon nanotubes under the scanning electron microscope. Through Raman spectrum, mass spectrum and high resolution transmission electron microscope, we can explain the growth mechanism of carbon nanotubes and our poor producing.
參考資料
[1] M. Endo;H. W. Kroto, J. Phys. Chem. 96, 6941-6944 (1992)
[2] Jourent, C.;Master, W. K.;Bernier, P.;Loiseau, A.;de la Chapelle, M. L.;Leframt,
S.;Deniard, P.;Lee, R.;Fisher, J. E., Nature 388, 756 (1997)
[3] Rao, A. M. et al., Science 275, 187 (1997)
[4] Ren, Z. F. et al., Science 282, 1105 (1998)
[5] “Carbon Nanotubes-preparation and properties”, ed. By Thomas W. Ebbesen,
CRC Press, Boca Raton, New York, London, Tokyo, (1997).
[6] “Carbon Nanotubes and Related Structures-new materials for twenty-first century”, ed. By Peter J. F. Harris, Cambridge University Press, (1999).
[7] M. S. Dresselhaus, G. Dresselhaus, Ph. Avouis, “Carbon Nanotubes Synthesis, Structure, Properties and Applications”, 80 Topics in Applied Physics, p32.
[8] C. Journet, P. Bernier, Appl. Phys. A, 67, 1 (1998)
[9] Applied Nanotechnologies, Inc. http://www.applied-nanotech.com
[10] J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T, Stockli, C. Duschi, L. Forro, W. A. de Heer and A.Chatelain, "Purification and size-selection of carbon nanotubes". Advanced Materials 9, 827 (1997)
[11] V. I. Trefilov, D. V. Schur, B. P. Tarasov, Yu. M. Shul'ga, A. V. Chernogorenko,
V. K. Pishuk, S. Yu. Zaginaichenko,《Fullerenes is a basis of materials for
future》. Kiev, p.148 (2001)
[12] E. G. Rakov, Uzpekhi Khim., V. 69, N 1, p.41 (2000)
[13] Terrones M., Hsu W.K., Kroto H.W., Walter D.R. Top. Curr. Chem. , 199,
189 (1999)
[14] Journet C., Bernier P. Appl. Phys. A: Mater. Sci. Process, A67(1), 1 (1998)
[15] Ajayan P. M., Chem. Rev., 1787 (1999)
[16] S. Ijima,; Ichihashi, T. Nature 363, 603 (1993)
[17] Shelimov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R.
E. Chem. Phys. Lett., 282, 429 (1998)
[18] Z. Shi, Y. Lian, F. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima. Solid State
Communications, 112, 35-37 (1999)
[19] Duesberg, G.S.; Burghard, M.; Muster, J.; Philipp, J.; Roth, S. Chem. Commun.,
1998, 435 (1998)
[20] Y. M. Shulga, B. P. Tarasov, E. P. Krinichnaya, V. E. Muradyan, et al. //
Collection of papers “Fullerenes and fullerene-like compounds”, Minsk, BGU,
p.41-48 (2000)
[21] Dillon A., Gennett T., Jones K., Alleman J., Parilla P., Heben, M. Adv. Mater.
16, 1354 (1999)
[22] Bandow, S.; Zhao, X.; Ando, Y. Appl. Phys. A 67, 23 (1999)
[23] Rinzler A., Liu J., Dai H., Nikolaev P., Huffman C., Rodrigues-Macias F., Boul
P., Lu A., Heymann D., Colbert D.T., Lee R.S., Finscher J., Rao A., Eklund P.C.,
Smalley R.E. Appl. Phys. A 67, 29 (1998)
[24] Dieter Heymann, L. P. Felipe Chibante, Robert R. Brooks, Wendy S. Wolbach, Richard E. Smalley, Science 265, 645-47 (1994)
[25] Terry K. Daly, Peter R. Buseck, Peter Williams, Charles F. Lewis, Science 259, 1599 (1993)
[26] L. Becker, J. L. Bada, R. E. Winans, T. E. Bunch, Nature 372, 507-507 (1994)
[27] Filippo Radicati di Brozolo, Theodore E. Bunch, Ronald H. Fleming & John Macklin, Nature 396, 37-40 (1994)
[28] Louis S. K. Pang, Anthony M. Vassallo, Michael A. Wilson, Nature 352, 480-480, (1991)
[29] M. Reibold, P. Paufler, A. A. Levin, W. Kochmann, N. P□tzke, D. C. Meyer, Nature 444, 286-286 (2006)
[30] Zhenhui Kang, Enbo Wang, Baodong Mao, Zhongmin Su, Lei Chen and Lin Xu, Nanotechnology 16, 1192-1195 (2005)
[31] M. S. Dresselhsus, G. Dresselhausc, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy n isolated single wall carbon nanotubes. Carbon 40, 2043-201 (2002)
[32] Kenji Hata, Don N. Futaba, Kohei Mizuno, Tatsunori Namai, Motoo Yumura, Sumio Iijima, Science 306, (2004)
[33] Oberlin-Endo model, J. Cryst, Growth 32, 335 (1976)
[34] RTK Backer model, Carbon 27, 315 (1989)