簡易檢索 / 詳目顯示

研究生: 何建勲
Ho, Jian-Syun
論文名稱: 新型透明電極與鈣鈦礦量子點固態自聚集之研究
Novel Transparent Electrodes and Solid State Self-Aggregation of Perovskite Quantum Dot
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 朱治偉
Chu, Chih-Wei
陳志平
Chen, Chih-Ping
呂明諺
Lu, Min-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 透明導電電極有機發光二極體鈣鈦礦量子點自聚集放大自發放射
外文關鍵詞: transparent conductive electrodes, organic light emitting diodes, perovskite quantum dots, self-aggregation, amplified spontaneous emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要以新型透明電極應用於有機發光二極體(organic light emitting diode, OLED)元件以及鈣鈦礦量子點固態自聚集作為研究題目。
    論文第一部分會對目前透明電極之發展與概況、OLED發展歷史、OLED元件發光原理以及鈣鈦礦量子點發展做簡介。
    論文的第二部分,我們探討了如何以光學模擬以及設計,設計出高穿透度之介電層/金屬/介電層(dielectric/metal/dielectric, DMD)透明電極,希望取代目前高成本且脆性高的ITO透明電極。我們以濺鍍方式製作具有高表面能之Nb2O5薄膜作為金屬下方介電層,成功降低上方Ag金屬之最低成膜厚度,再搭配抗反射層製作出在可見光範圍具有平均穿透度96.2 %的DMD透明電極。我們將此透明電極應用於OLED元件上,成功製作出高外部量子效率(external quantum efficiency, EQE)46.0 %的OLED元件,且軟性元件EQE也高達43.8 %,展現此DMD透明電極在OLED元件上具有極高取代ITO之可能性。藉由光學模擬,我們也展示了此DMD透明電極可將波長較元件放光波長短的光子導入基板模態,再使用光取出層後可將此些光子導出放光。為了使此DMD電極可應用於白光元件上,我們嘗試開發導電金屬氧化物以取代Nb2O5,使得Ag在最低成膜厚度下,即使稍有不連續仍能不影響電極導電度,並且降低微共振腔效應。
    論文的第三部分,我們對於本實驗團隊以噴霧型合成法所合成之高穩定性CH3NH3PbBr3鈣鈦礦量子點進行光學性質以及固態自聚集之研究。我們以己烷作為溶液製作薄膜,發現其具有ASE的現象,閾值為2.2 mJ cm-2,而進一步以外力壓平薄膜的手法,可使閾值降低到0.8 mJ cm-2,展現其作為光增益介質的潛力。此壓平薄膜的手法也可以本來不具有ASE現象的甲苯溶液薄膜產生ASE現象。而將溶液添加正三十六烷後,我們意外發現其對於量子點之自聚集有所幫助,因此我們對於此聚集物進行整體放光行為以及微觀尺度下量子點排列情形做研究與探討。藉由原子力顯微鏡(atomic force microscope, AFM)、穿透式電子顯微鏡(transmission electron microscope, TEM)以及低掠角小角度X光散射(grazing-incidence small-angle X-ray scattering, GISAXS)的量測我們發現此聚集物並非超晶格之排列,且不去有量子點彼此耦合之放光。對於此我們提出一些建議與方向以供後續量子點自聚集之研究參考。


    In this thesis, I focused on the organic light emitting diode (OLED) based on novel transparent electrodes and self-aggregation of perovskite quantum dots.
    In the first part of this thesis, I briefly reviewed the history of transparent electrodes, OLEDs and perovskite quantum dots.
    In the second part, I focused on the reduction of the percolation limit of the Ag thin-film thickness for the dielectric/metal/dielectric (DMD) electrode and increasing of the transmittance by the optical design. By utilizing high n Nb2O5 as the Ag wetting layer, the percolation limit of the Ag thin-film thickness was reduced to 5 nm. With the anti-reflection layer of dipyrazino[2,3-f:2′2pyrh]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN), the average transmittance of DMD electrode could reach 96.2 % in the region of the visible light. Based on this DMD electrode, I demonstrated an OLED with 46.0 % and 43.8 % external quantum efficiency on glass and polyethylene naphthalate (PEN) substrate, respectively. By the optical simulation, I showed that this DMD electrode can guide the photon into substrate mode, so the efficiency of white emission device can be increased. To make the DMD electrode used in a white emission device, I tried to make a conductive metal-oxide layer. By utilizing the conductive metal-oxide layer, an electrode can still be conductive even the thickness of Ag is reduced to a near percolation limit.The unwanted microcavity effect could thus be reduced, .
    In the third part, I studied the amplified spontaneous emission (ASE) and self-aggregation of high stability CH3NH3PbBr3 perovskite quantum dots synthesized by the spray method invented by our research group. I found ASE from the perovskite thin film fabricated from a hexane solution with a threshold of 2.2 mJ cm-2. By mechanically compressing the film to form a smooth surface morphology, I found a lower threshold of 0.8 mJ cm-2. By adding n-hexatriacontane into the solution of quantum dots, a diamond shape aggregation was found. By utilizing atomic force microscope, transmission electron microscope and grazing-incidence small-angle X-ray scattering techniques, I found that the addition of n-hexatriacontane cannot help forming superlattice of the perovskite dots. Methods and future directions of making perovskite quantum dot self-aggregation and superlattice were purposed in the final part of the chapter.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 分子式目錄 XIV 第1章 序論 1 1-1 前言 1 1-2 論文架構 3 第2章 新型透明電極與鹵化鈣鈦礦量子點之概論 4 2-1 透明電極之簡介 4 2-2 介電層/金屬/介電層透明電極發展與簡介 10 2-2.1 降低金屬percolation limit厚度 11 2-2.2 電層/金屬/介電層透明電極之光學設計 13 2-3 透明電極之片電阻量測原理 17 2-4 OLED 發展歷史 21 2-5 OLED 元件發光原理 24 2-5.1 OLED 元件結構與複合放光原理 24 2-5.2 有機材料放光與能量轉移 27 2-5.3 發光效率 29 2-5.4 OLED放光模態與功率耗損頻譜 31 2-6 鈣鈦礦量子點之簡介 35 2-6.1 鹵化鈣鈦礦簡介 36 2-6.2 鹵化鈣鈦礦量子點之發展 38 第3章 DMD新型透明電極應用於高效率放光OLED元件 40 3-1 簡介 40 3-2 文獻回顧 43 3-2.1 DMD透明電極與其在光電元件上之應用 43 3-2.2 導出波導模態 44 3-3 實驗製程與量測 47 3-3.1 DMD透明電極之製作 47 3-3.2 DMD透明電極與TNO導電金屬氧化物之特性量測 48 3-3.3 OLED元件材料 48 3-3.4 OLED元件製作 52 3-3.5 OLED元件與DMD應用於白光元件之光學模擬 52 3-3.6 薄膜與OLED元件之量測 53 3-3.7 Ti0.94Nb0.06Ox導電金屬氧化物之製作 54 3-4 結果與討論 55 3-4.1 DMD透明電極之光學設計 55 3-4.2 Nb2O5/Ag之表面形貌 60 3-4.3 DMD透明電極特性量測 64 3-4.4 DMD透明電極應用於高外部耦合效率之OLED元件 69 3-4.5 DMD透明電極於不同光色元件之放光表現模擬 78 3-4.6 Ti0.94Nb0.06Ox導電金屬氧化物之製作與特性量測 82 3-5 結論 87 第4章 鹵化鈣鈦礦量子點固態自聚集之研究 88 4-1 簡介 88 4-2 文獻回顧 91 4-2.1 鹵化鈣鈦礦放大自發放射 91 4-2.2 鹵化鈣鈦礦量子點固態自聚集 95 4-3 實驗製程與量測 98 4-3.1 光致放光頻譜與光致發光量子產率量測 98 4-3.2 瞬態光致發光量測 98 4-3.3 放大自發放射之量測儀器架設 98 4-3.4 鈣鈦礦量子點薄膜之製備 99 4-3.5 鈦礦量子點薄膜之霧值量測 99 4-4 結果與討論 101 4-4.1 鈣鈦礦量子點固態薄膜之放大自發放射 101 4-4.2 添加正三十六烷之鈣鈦礦量子點薄膜表面形貌 108 4-4.3 添加正三十六烷之鈣鈦礦量子點薄膜之放光特性 114 4-4.4 添加正三十六烷之鈣鈦礦量子點薄膜之微觀排列 117 4-5 結論 121 第5章 未來展望 123 參考文獻 125

    [1] S. R. Forrest, Nature 2004, 428, 911.
    [2] S. K. Hau, H.-L. Yip, A. K. Y. Jen, Polymer Reviews 2010, 50, 474.
    [3] W. Cao, J. Xue, Energy & Environmental Science 2014, 7, 2123.
    [4] N. Espinosa, M. Hösel, D. Angmo, F. C. Krebs, Energy & Environmental Science 2012, 5, 5117.
    [5] K.-H. Kim, E. S. Ahn, J.-S. Huh, Y.-H. Kim, J.-J. Kim, Chemistry of Materials 2016, 28, 7505.
    [6] K.-H. Kim, J.-L. Liao, S. W. Lee, B. Sim, C.-K. Moon, G.-H. Lee, H. J. Kim, Y. Chi, J.-J. Kim, Advanced Materials 2016, 28, 2526.
    [7] G. Li, R. Zhu, Y. Yang, Nature Photonics 2012, 6, 153.
    [8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Progress in Photovoltaics: Research and Applications 2015, 23, 1.
    [9] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
    [10] A. Corradini, A. M. Marinangeli, M. Mastragostino, Electrochimica Acta 1990, 35, 1757.
    [11] C. Adachi, T. Tsutsui, S. Saito, Applied Physics Letters 1990, 56, 799.
    [12] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 1998, 395, 583.
    [13] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, Science 2001, 293, 1119.
    [14] X. Wang, L. Zhi, K. Müllen, Nano Letters 2008, 8, 323.
    [15] D. S. Hecht, L. Hu, G. Irvin, Advanced Materials 2011, 23, 1482.
    [16] T. Minami, Semiconductor Science and Technology 2005, 20, S35.
    [17] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nature Materials 2009, 8, 494.
    [18] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, Z. H. Lu, Nature Photonics 2011, 5, 753.
    [19] H.-W. Lin, S.-W. Chiu, L.-Y. Lin, Z.-Y. Hung, Y.-H. Chen, F. Lin, K.-T. Wong, Advanced Materials 2012, 24, 2269.
    [20] H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Nature Communications 2015, 6, 6503.
    [21] J. Lee, T.-H. Han, M.-H. Park, D. Y. Jung, J. Seo, H.-K. Seo, H. Cho, E. Kim, J. Chung, S.-Y. Choi, T.-S. Kim, T.-W. Lee, S. Yoo, Nature Communications 2016, 7, 11791.
    [22] V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, J. Narayan, Journal of Applied Physics 2007, 102, 023501.
    [23] H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, N. Tkachenko, Solar Energy Materials and Solar Cells 2010, 94, 1379.
    [24] S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, ACS Nano 2010, 4, 7064.
    [25] S. D. Yambem, A. Haldar, K.-S. Liao, E. P. Dillon, A. R. Barron, S. A. Curran, Solar Energy Materials and Solar Cells 2011, 95, 2424.
    [26] N. Formica, D. Sundar Ghosh, T. L. Chen, C. Eickhoff, I. Bruder, V. Pruneri, Solar Energy Materials and Solar Cells 2012, 107, 63.
    [27] D. Zhang, H. Yabe, E. Akita, P. Wang, R.-i. Murakami, X. Song, Journal of Applied Physics 2011, 109, 104318.
    [28] M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, M. Aldissi, Thin Solid Films 2009, 518, 1250.
    [29] H.-K. Park, J.-W. Kang, S.-I. Na, D.-Y. Kim, H.-K. Kim, Solar Energy Materials and Solar Cells 2009, 93, 1994.
    [30] S.-I. Na, J.-S. Lee, Y.-J. Noh, T.-W. Kim, S.-S. Kim, H.-I. Joh, S. Lee, Solar Energy Materials and Solar Cells 2013, 115, 1.
    [31] K. Tvingstedt, O. Inganäs, Advanced Materials 2007, 19, 2893.
    [32] D. Angmo, F. C. Krebs, Journal of Applied Polymer Science 2013, 129, 1.
    [33] D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Søndergaard, M. Hösel, M. Jørgensen, R. Gupta, G. U. Kulkarni, F. C. Krebs, Organic Electronics 2013, 14, 984.
    [34] J. S. Yu, I. Kim, J. S. Kim, J. Jo, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, D. Angmo, M. Jorgensen, F. C. Krebs, Nanoscale 2012, 4, 6032.
    [35] L. Hu, D. S. Hecht, G. Grüner, Chemical Reviews 2010, 110, 5790.
    [36] H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, Journal of the American Chemical Society 2007, 129, 7758.
    [37] D.-Y. Cho, K. Eun, S.-H. Choa, H.-K. Kim, Carbon 2014, 66, 530.
    [38] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 2010, 4, 43.
    [39] V. C. Tung, M. J. Allen, Y. Yang, R. B. Kaner, Nature Nanotechnology 2008, 4, 25.
    [40] S. Pang, Y. Hernandez, X. Feng, K. Müllen, Advanced Materials 2011, 23, 2779.
    [41] M. He, J. Jung, F. Qiu, Z. Lin, Journal of Materials Chemistry 2012, 22, 24254.
    [42] J. Hwang, H. Kyw Choi, J. Moon, T. Yong Kim, J.-W. Shin, C. Woong Joo, J.-H. Han, D.-H. Cho, J. Woo Huh, S.-Y. Choi, J.-I. Lee, H. Yong Chu, Applied Physics Letters 2012, 100, 133304.
    [43] W. Gaynor, J.-Y. Lee, P. Peumans, ACS Nano 2010, 4, 30.
    [44] Y. Sun, Nanoscale 2010, 2, 1626.
    [45] J.-W. Lim, D.-Y. Cho, K. Jihoon, S.-I. Na, H.-K. Kim, Solar Energy Materials and Solar Cells 2012, 107, 348.
    [46] A. Kim, Y. Won, K. Woo, S. Jeong, J. Moon, Advanced Functional Materials 2014, 24, 2462.
    [47] D.-S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, J. C. de Mello, Advanced Materials 2011, 23, 4371.
    [48] G. G. Martin Dressel, George F. Bertsch, Electrodynamics of Solids Optical Properties of Electrons in Matter 2002.
    [49] D. Gupta, M. M. Wienk, R. A. J. Janssen, Advanced Energy Materials 2013, 3, 782.
    [50] C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, H.-K. Kim, Solar Energy Materials and Solar Cells 2011, 95, 3269.
    [51] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Advanced Functional Materials 2011, 21, 1076.
    [52] W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, Y. Cao, Energy & Environmental Science 2013, 6, 1956.
    [53] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nature Nanotechnology 2010, 5, 574.
    [54] E. Bauer, Zeitschrift fur Kristallographie - New Crystal Structures 1958, 110, 395.
    [55] J. Yun, W. Wang, T. S. Bae, Y. H. Park, Y.-C. Kang, D.-H. Kim, S. Lee, G.-H. Lee, M. Song, J.-W. Kang, ACS Applied Materials & Interfaces 2013, 5, 9933.
    [56] D.-Y. Kim, Y. C. Han, H. C. Kim, E. G. Jeong, K. C. Choi, Advanced Functional Materials 2015, 25, 7145.
    [57] J. Meiss, M. K. Riede, K. Leo, Journal of Applied Physics 2009, 105, 063108.
    [58] J. Meiss, M. K. Riede, K. Leo, Applied Physics Letters 2009, 94, 013303.
    [59] S. Schubert, J. Meiss, L. Müller-Meskamp, K. Leo, Advanced Energy Materials 2013, 3, 438.
    [60] J. H. Im, K.-T. Kang, S. H. Lee, J. Y. Hwang, H. Kang, K. H. Cho, Organic Electronics 2016, 33, 116.
    [61] L.-H. Xu, Q.-D. Ou, Y.-Q. Li, Y.-B. Zhang, X.-D. Zhao, H.-Y. Xiang, J.-D. Chen, L. Zhou, S.-T. Lee, J.-X. Tang, ACS Nano 2016, 10, 1625.
    [62] T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, M. C. Gather, Advanced Optical Materials 2013, 1, 921.
    [63] T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, M. C. Gather, Advanced Optical Materials 2013, 1, 707.
    [64] Y. Yang, Q. Chen, Y.-T. Hsieh, T.-B. Song, N. D. Marco, H. Zhou, Y. Yang, ACS Nano 2015, 9, 7714.
    [65] R. A. Hatton, M. R. Willis, M. A. Chesters, D. Briggs, Journal of Materials Chemistry 2003, 13, 722.
    [66] H. M. Stec, R. A. Hatton, ACS Applied Materials & Interfaces 2012, 4, 6013.
    [67] H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Advanced Functional Materials 2011, 21, 1709.
    [68] J. Zou, C.-Z. Li, C.-Y. Chang, H.-L. Yip, A. K. Y. Jen, Advanced Materials 2014, 26, 3618.
    [69] L. Ke, S. C. Lai, H. Liu, C. K. N. Peh, B. Wang, J. H. Teng, ACS Applied Materials & Interfaces 2012, 4, 1247.
    [70] C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.-K. R. Wu, L. J. Guo, Advanced Materials 2014, 26, 5696.
    [71] D. Zhao, C. Zhang, H. Kim, L. J. Guo, Advanced Energy Materials 2015, 5, 1500768.
    [72] H. A. Macleod, Thin-film optical filters 2001, CRC press.
    [73] J. B. Birks, J. H. Appleyard, R. Pope, Photochemistry and Photobiology 1963, 2, 493.
    [74] C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
    [75] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Electroluminescence in Organic Films with Three-Layer Structure, Vol. 27, 1988.
    [76] C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics 1989, 65, 3610.
    [77] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [78] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
    [79] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [80] H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nature Communications 2014, 5, 4016.
    [81] K. Kalyanasundaram, E. Borgarello, D. Duonghong, M. Grätzel, Angewandte Chemie International Edition in English 1981, 20, 987.
    [82] R. Rossetti, S. Nakahara, L. E. Brus, The Journal of Chemical Physics 1983, 79, 1086.
    [83] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    [84] D. Liu, T. L. Kelly, Nature Photonics 2013, 8, 133.
    [85] Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, T.-W. Lee, Advanced Materials 2015, 27, 1248.
    [86] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, Science 2015, 350, 1222.
    [87] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, T.-W. Lee, Advanced Materials 2016, 28, 7515.
    [88] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum, Nature Materials 2014, 13, 476.
    [89] D. Li, H.-C. Cheng, Y. Wang, Z. Zhao, G. Wang, H. Wu, Q. He, Y. Huang, X. Duan, Advanced Materials 2017, 29, 1601959.
    [90] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, T. Wu, Nature Communications 2015, 6, 8238.
    [91] C. Gu, J.-S. Lee, ACS Nano 2016, 10, 5413.
    [92] B. Hwang, J.-S. Lee, Scientific Reports 2017, 7, 673.
    [93] F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
    [94] W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, J. Jie, Advanced Functional Materials 2016, 26, 4797.
    [95] F. Zhang, S. Huang, P. Wang, X. Chen, S. Zhao, Y. Dong, H. Zhong, Chemistry of Materials 2017, 29, 3793.
    [96] Z. Yuan, Y. Shu, Y. Xin, B. Ma, Chemical Communications 2016, 52, 3887.
    [97] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
    [98] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Nature Photonics 2015, 9, 679.
    [99] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X. Y. Zhu, Nature Materials 2015, 14, 636.
    [100] S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn, K. T. Nam, Nature Energy 2016, 2, 16185.
    [101] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, Nature Photonics 2016, 10, 699.
    [102] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Letters 2013, 13, 1764.
    [103] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Journal of Materials Chemistry A 2014, 2, 705.
    [104] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Letters 2014, 14, 2584.
    [105] A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin, M. Grätzel, Chemistry of Materials 2014, 26, 6160.
    [106] A. Pisoni, J. Jaćimović, O. S. Barišić, M. Spina, R. Gaál, L. Forró, E. Horváth, The Journal of Physical Chemistry Letters 2014, 5, 2488.
    [107] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend, The Journal of Physical Chemistry Letters 2014, 5, 1421.
    [108] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, Nature Nanotechnology 2014, 9, 687.
    [109] L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, Journal of the American Chemical Society 2014, 136, 850.
    [110] E. Cassette, T. Mirkovic, G. D. Scholes, The Journal of Physical Chemistry Letters 2013, 4, 2091.
    [111] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, Physical Review Applied 2014, 2, 034007.
    [112] M. Nirmal, L. Brus, Accounts of Chemical Research 1999, 32, 407.
    [113] S. Gonzalez-Carrero, R. E. Galian, J. Pérez-Prieto, Journal of Materials Chemistry A 2015, 3, 9187.
    [114] S.-W. Dai, B.-W. Hsu, C.-Y. Chen, C.-A. Lee, H.-Y. Liu, H.-F. Wang, Y.-C. Huang, T.-L. Wu, A. Manikandan, R.-M. Ho, C.-S. Tsao, C.-H. Cheng, Y.-L. Chueh, H.-W. Lin, Advanced Materials 2018, 30, 1705532.
    [115] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Advanced Materials 2012, 24, 2844.
    [116] S. Lee, J.-S. Yeo, Y. Ji, C. Cho, D.-Y. Kim, S.-I. Na, B. H. Lee, T. Lee, Nanotechnology 2012, 23, 344013.
    [117] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, Applied Physics Letters 2006, 88, 233506.
    [118] D. L. Carroll, R. Czerw, S. Webster, Synthetic Metals 2005, 155, 694.
    [119] X. Liu, X. Cai, J. Qiao, J. Mao, N. Jiang, Thin Solid Films 2003, 441, 200.
    [120] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, S. V. Tabatabaei, Journal of Luminescence 2012, 132, 992.
    [121] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 2009, 459, 234.
    [122] W.-C. Lin, C.-W. Chen, H.-W. Lin, Solid-State Electronics 2015, 105, 58.
    [123] A. Köhnen, M. C. Gather, N. Riegel, P. Zacharias, K. Meerholz, Applied Physics Letters 2007, 91, 113501.
    [124] H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, J.-J. Kim, Advanced Materials 2016, 28, 4920.
    [125] Y. Sun, S. R. Forrest, Nature Photonics 2008, 2, 483.
    [126] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, Y. H. Lee, Advanced Materials 2003, 15, 1214.
    [127] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, U. Lemme, Opt. Express 2012, 20, A932.
    [128] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Nature Photonics 2010, 4, 222.
    [129] H. M. Liddell, Computer-Aided Techniques for the Design of Multilayer Filters, IOP Publishing Ltd., 1981.
    [130] Y.-C. Shiau (2017), Organic and perovskite Optoelectrnic Devices with Novel Transparent Electrodes and Horizontally Oriented Molecules, Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Master degree, https://hdl.handle.net/11296/sre6a9
    [131] J. Ham, J.-L. Lee, Advanced Energy Materials 2014, 4, 1400539.
    [132] B. Jańczuk, T. Białopiotrowicz, A. Zdziennicka, Journal of Colloid and Interface Science 1999, 211, 96.
    [133] J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Letters 2008, 8, 689.
    [134] C. Zhang, N. Kinsey, L. Chen, C. Ji, M. Xu, M. Ferrera, X. Pan, V. M. Shalaev, A. Boltasseva, L. J. Guo, Advanced Materials 2017, 29, 1605177.
    [135] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, Journal of Applied Physics 1996, 80, 6954.
    [136] M. Thomschke, R. Nitsche, M. Furno, K. Leo, Applied Physics Letters 2009, 94, 083303.
    [137] T. Hitosugi, N. Yamada, S. Nakao, Y. Hirose, T. Hasegawa, physica status solidi (a) 2010, 207, 1529.
    [138] T. Ishida, M. Okada, T. Tsuchiya, T. Murakami, M. Nakano, Thin Solid Films 2011, 519, 1934.
    [139] S. González-Carrero, R. E. Galian, J. Pérez-Prieto, Particle & Particle Systems Characterization 2015, 32, 709.
    [140] D. B. Mitzi, Templating and structural engineering in organic–inorganic perovskites, Vol. 1, 2001.
    [141] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [142] B. Cai, Y. Xing, Z. Yang, W.-H. Zhang, J. Qiu, Energy & Environmental Science 2013, 6, 1480.
    [143] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Scientific Reports 2012, 2, 591.
    [144] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
    [145] A. Kojima, M. Ikegami, K. Teshima, T. Miyasaka, Chemistry Letters 2012, 41, 397.
    [146] D. Priante, I. Dursun, M. S. Alias, D. Shi, V. A. Melnikov, T. K. Ng, O. F. Mohammed, O. M. Bakr, B. S. Ooi, Applied Physics Letters 2015, 106, 081902.
    [147] Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan, Nano Letters 2018, 18, 4976.
    [148] J. Pan, S. P. Sarmah, B. Murali, I. Dursun, W. Peng, M. R. Parida, J. Liu, L. Sinatra, N. Alyami, C. Zhao, E. Alarousu, T. K. Ng, B. S. Ooi, O. M. Bakr, O. F. Mohammed, The Journal of Physical Chemistry Letters 2015, 6, 5027.
    [149] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nature Communications 2015, 6, 8056.
    [150] G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, T. Stöferle, Nature 2018, 563, 671.
    [151] Y. Nagaoka, K. Hills-Kimball, R. Tan, R. Li, Z. Wang, O. Chen, Advanced Materials 2017, 29, 1606666.
    [152] D. Baranov, S. Toso, M. Imran, L. Manna, The Journal of Physical Chemistry Letters 2019, 10, 655.
    [153] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
    [154] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 2016, 354, 206.
    [155] B. R. Sutherland, S. Hoogland, M. M. Adachi, P. Kanjanaboos, C. T. O. Wong, J. J. McDowell, J. Xu, O. Voznyy, Z. Ning, A. J. Houtepen, E. H. Sargent, Advanced Materials 2015, 27, 53.
    [156] K. L. Shaklee, R. F. Leheny, Applied Physics Letters 1971, 18, 475.
    [157] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, E. H. Sargent, ACS Nano 2014, 8, 10947.
    [158] R. Xia, G. Heliotis, D. D. C. Bradley, Applied Physics Letters 2003, 82, 3599.
    [159] C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, A. Nurmikko, Nature Nanotechnology 2012, 7, 335.
    [160] C. She, I. Fedin, D. S. Dolzhnikov, A. Demortière, R. D. Schaller, M. Pelton, D. V. Talapin, Nano Letters 2014, 14, 2772.
    [161] Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Journal of the American Chemical Society 2015, 137, 10276.
    [162] M. Kulbak, D. Cahen, G. Hodes, The Journal of Physical Chemistry Letters 2015, 6, 2452.
    [163] S. A. Veldhuis, Y. K. E. Tay, A. Bruno, S. S. H. Dintakurti, S. Bhaumik, S. K. Muduli, M. Li, N. Mathews, T. C. Sum, S. G. Mhaisalkar, Nano Letters 2017, 17, 7424.
    [164] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Letters 2015, 15, 3692.
    [165] Q. A. Akkerman, G. Rainò, M. V. Kovalenko, L. Manna, Nature Materials 2018, 17, 394.
    [166] M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk, Science 2017, 358, 745.
    [167] G. Almeida, L. Goldoni, Q. Akkerman, Z. Dang, A. H. Khan, S. Marras, I. Moreels, L. Manna, ACS Nano 2018, 12, 1704.
    [168] Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi, D. H. Son, Nano Letters 2018, 18, 3716.
    [169] M. Imran, P. Ijaz, D. Baranov, L. Goldoni, U. Petralanda, Q. Akkerman, A. L. Abdelhady, M. Prato, P. Bianchini, I. Infante, L. Manna, Nano Letters 2018, 18, 7822.
    [170] M. A. Boles, M. Engel, D. V. Talapin, Chemical Reviews 2016, 116, 11220.
    [171] C. B. Murray, C. R. Kagan, M. G. Bawendi, Annual Review of Materials Science 2000, 30, 545.
    [172] Y. Tong, E.-P. Yao, A. Manzi, E. Bladt, K. Wang, M. Döblinger, S. Bals, P. Müller-Buschbaum, A. S. Urban, L. Polavarapu, J. Feldmann, Advanced Materials 2018, 30, 1801117.
    [173] I. M. Dawson, V. Vand, M. Robertson John, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1951, 206, 555.

    QR CODE