簡易檢索 / 詳目顯示

研究生: 賴文光
LAI, WENG-KUANG
論文名稱: 受熱負載含缺陷群雙層材料構件之應力分析
STRESS ANALYSIS OF BI-MATERIAL COMPONENTS CONTAINING DEFECTS UNDER THERMAL LOADING
指導教授: 王偉中
WANG, WEI-CHUNG
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 158
中文關鍵詞: 熱應力散射光彈法SPSD值介面應力
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用散射光彈法(Scattered-light Photoelastic Method)探討受熱負載含缺陷群雙層材料構件之三維應力情形。本實驗利用綠光雷射光切片對含缺陷群PLM-4B光彈試片之表層、次表層及中層做照射,以得到三層之暫態條紋影像,再利用散射光彈法理論取得試片之次主應力差值,並且搭配有限元素法之商用軟體ANSYS做分析,由ANSYS結果亦可得到實驗無法得到之介面應力及孔邊應力。
    本研究是目前唯一使用散射光彈方法來探討含缺陷群雙層材料受熱負載之三維應力情形,為非破壞性應力量測方法,可避免應力凍結法之繁複切片過程。


    一、簡介 1 二、文獻回顧 3 2.1 雙層與多層材料層間應力之研究 3 2.2 散射光彈法之研究與應用 5 三、原理 7 3.1 熱應力發生成因及其物理現象 7 3.2 熱彈性理論 7 3.2.1 一般性熱彈性控制方程式 7 3.2.2 非耦合熱彈性控制方程式 8 3.3 半無窮板中之過渡熱流[26] 9 3.4 傳統光彈法[27] 10 3.5 數位光彈法 12 3.6 散射光彈法 14 3.6.1 散射做為檢視鏡 14 3.6.2 散射做為偏極鏡 15 3.6.3 散射光強度 15 3.6.4 應力-光學定律 17 3.6.5 光彈材料元件與次主應力值[31] 19 四、實驗試片及裝置 20 4.1 實驗試片規劃 20 4.2 實驗前處理裝置 20 4.3 校正用之施載架 21 4.4 散射光彈實驗裝置 21 4.5 影像擷取及處理 .22 五、實驗程序 23 5.1 試片之加工 23 5.2 試片拋光及退火 23 5.3 上膠 24 5.4 實驗 24 5.5 影像處理 25 5.6 次主應力差值計算 26 5.7 有限元素軟體ANSYS[39]建立模型分析 27 六、結果與討論 30 6.1 散射條紋分析 30 6.2 試片材料材料條紋值之校正(試片A) 31 6.3 單一材料PLM-4B之熱應力分析(試片B) 32 6.3.1 表層 33 6.3.2 次表層 34 6.3.3 中層 35 6.4 含並列式雙圓孔雙層材料試片之熱應力分析(試片C) 36 6.4.1 表層 37 6.4.2 次表層 38 6.4.3 中層 39 6.5 含縱列式三圓孔雙層材料試片之熱應力分析(試片D) 41 6.5.1 表層 41 6.5.2 次表層 42 6.5.3 中層 42 6.6 含並列式三圓孔雙層材料試片之熱應力分析(試片E) 43 6.6.1 表層 43 6.6.2 次表層 44 6.6.3 中層 45 6.7 圓孔邊緣之應力分析 45 6.7.1 試片C之圓孔邊緣應力分析 46 6.7.2 試片D之圓孔邊緣應力分析 46 6.7.3 試片E之圓孔邊緣應力分析 47 七、結論與展望 48 八、參考文獻 51

    [1] H. F. Nied, “Stress Distribution During Thermal Shock in a Circumferentially Cracked Hollow Cylinder with Cladding”, Proceedings of SECTAM, Vol. 1, pp. 350-354, New York, U. S. A., May 10-11, 1984.
    [2] Website: http://vm.nthu.edu.tw/science/shows/nuclear/safety/content
    7-2.html.
    [3] “ Rules for Inservice Inspection of Nuclear Power Plant Components”, Boiler and Pressure Vessel Code, Division 1,
    Section , The American Society of Mechanical Engineers, pp.
    11-19, New York, U. S. A., 1977.
    [4] G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis”, Proceedings of Royal Society, A82, London, U. K., pp. 172-175, 1909.
    [5] S. P. Timoshenko, “Analysis of Bi-metal Thermostats”, J. of the Optical Society of America, Vol. 11, pp. 233-255, 1925.
    [6] D. B. Bogy, “Edge-Bonded Dissimilar Orthogonal Elastic Wedges under Normal and Shear Loading”, J. of Applied Mechanics, Vol. 35, pp. 460-466, 1968.
    [7] D. B. Bogy, “On the Problem of Edge-Bonded Elastic Quarter-Planes Loaded at the Boundary”, Intl. J. of Solids and Structures, Vol. 6, pp. 1287-1313, 1970.
    [8] W. T. Chen and C. W. Nelson, “Thermal Stress in Bonded Joints”, IBM J. of Research and Development, Vol. 23, pp.178-188, 1979.
    [9] E. Suhir, “Stresses in Bimetal Thermostats”, J. of Applied Mechanics, Vol. 53, pp. 657-660, 1986.
    [10] E. Suhir, “Interfacial Stresses in Bimetal Thermostats”, J. of Applied Mechanics, Vol. 56, pp. 595-600, 1989.
    [11] W. L. Yin, “Thermal Stresses and Free-Edge Effects in Laminated
    Beams: A Variational Approach Using Stress Functions”, J. of Electronic Packaging, Vol. 113, pp. 68-75, 1991.
    [12] H. B. Mirman, “Effects of Peeling Stresses in Bi-material Assembly”, J. of Electronic Packaging, Vol. 114, pp.124-131, 1991.
    [13] H. B. Mirman, “Interlaminar Stresses in Layered Beams”, J. of Electronic Packaging, Vol. 114, pp. 389-394, 1992.
    [14] W. C. Wang and J. S. Hsu, “Theoretical, Experimental and Numerical Investigations on the Interfacial Stresses of Bonded Structures”, paper no. 274, 6 pages, International Symposium on Experimental Mechanics, Taipei, Taiwan, R. O. C., December 28-30, 2002.
    [15] W. C. Wang and J. C. Lin, “Photoelastic Investigation of Bimaterial Interfacial Stresses Induced by Thermal Loading”, J. of Strain, Vol. 39, pp. 143-148, 2003.
    [16] J. H. Lau, “Thermal Stress and Strain in Microelectronics Packaging”, Van Nostrand Reinhold, New York, U. S. A., 1993.
    [17] R. Weller, “A New Method for Photoelasticity in Three Dimensions”, J. of Applied Physics, Vol. 10, pp. 266, 1939.
    [18] D. C. Drucker and R. D. Mindlin, “Stress Analysis by Three-Dimensional Photoelastic Methods”, J. of Applied Physics, Vol. 11, pp. 724-732, 1940.
    [19] H. T. Jessop, “The Scattered-Light Method of Exploration of Stresses in Two- and Three-Dimensional Methods”, Brit. J. of Applied Physics, Vol. 2, pp. 249-260, 1951.
    [20] W. Shelson and L. W. Smith, “A Photoelastic Method Employing Scattered-Light for the Solution of Plane Stress Problem”, Brit. J. of Applied Physics, Vol. 7, pp. 436-439, 1956.
    [21] Y. F. Cheng, “New Techniques for Scattered-Light Phootoelasticity”, Experimental Mechanics, Vol. 3, pp. 275-278, 1963.
    [22] L. S. Srinath, “Analysis of Scattered-Light Method in Photoelasticity”, Experimental Mechanics, Vol. 9, pp. 463-468, 1969.
    [23] R. W. Aderholdt and W. F. Swinson, “Establishing the Boundary Retardation with respect to the Observed Fringes in Scattered-Light Photoelasticity”, Experimental Mechanics, Vol. 11, pp.521-523, 1971.
    [24] A. Katoh, J. Rao, M. Takashi and T. Kunio, “Mode III Stress Intensity Factor Measurement by Scattered-Light Photoelasticity Using Digital Image Processing”, Proceedings of Asian Pacific Conference on Fracture and Strength, Japan, pp. 401-406, 1993.
    [25] J. L. Nowinski, “Theory of Thermoelasticity with Applications”, Alphen and den Rijn, Netherlands:Sijthoff and Noordhoff, 1978.
    [26] M. Tsuji and M. Oda, “Investigation of Photothermoelasticity by Means of Heating”, J. of Thermal Stresses, Vol., pp215-232, 1979.
    [27] J. W. Dally and W. F. Riley, “Experimental Stress Analysis”, 3rd Ed.,
    McGraw-Hill, New York, U. S. A., 1991.
    [28] Voloshin and C. P. Burger, “Half-Fringe Photoelasticity: A New
    Approach to Whole-Field Stress Analysis”, Experimental Mechanics, Vol. 23, No. 3, pp. 304-313, 1983.
    [29] W. C. Wang, T. L. Chen and S. H. Lin, “Digital Photoelastic
    Investigation of Transient Thermal Stresses of Two Interacting
    Defects”, J. of Strain Analysis for Engineering Design, Vol. 25,
    No. 4, pp. 215-228, 1990.
    [30] X. L. Liu, S. C. Pan and L. Z. Ha, “The Double-Light-Beam Method in Three-Dimensional Scattered-Light Photoelasticity”, Experimental Mechanics, pp. 60-64, 1988.
    [31] L. S. Srinath, “Scattered Light Photoelasticity”, Tata McGraw-Hill,
    Indian, 1983.
    [32] “Instructions for Using Photoelastic Plastics Liquid PLM-4 and
    Precast Block PLM-4B”, Photolastic Division, Measurements
    Group, Inc., Raleigh, NC, U. S. A., 1974.
    [33] Website: http://www.pentad.com.tw/
    [34] Website: http://www.yscco.com.tw/
    [35] 林礽昌,“雙層材料熱應力之研究”,國立清華大學動力機械工程學系博士論文,民國95年。
    [36] Instruments Division, Measurements Group, Inc., Raleigh, NC, U. S. A., 1983.
    [37] “MATLAB”, Version 6.5, The MathWorks, Inc., MA, U. S. A.,
    2002.
    [38] 彭明輝,“自動光學檢測”,國立清華大學動力機械工程學系教
    學講義。
    [39] “ANSYS”, Version 5.7, Swanson Analysis System, Inc., Houston, PA, U. S. A., 2001.
    [40] “Standard Test Method for Determination of Modulus of Elasticity for Rigid and Semirigid Plastic Specimens by Controlled Rate of Loading Using Three-Point Bending”, D5934-02, The American Society for Testing Materials International, PA, U. S. A., June, 2002.
    [41] “Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Anaiysis”, E831-05, The American Society for Testing Materials International, PA, U. S. A., June, 2005.
    [42] “OriginR”, Version 7.0 SRO, OriginLab Corporation, MA, U. S. A., 1991-2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE