研究生: |
徐嵩閔 Hsu, Song-Ming |
---|---|
論文名稱: |
使用第一原理計算SiC/SiO2核殼奈米線光致發光光譜中的峰值和鐵酸鉍摻雜釹漏電流的第一原理詳細分析 Peak emission intensity in photoluminescence spectrum of SiC/SiO2 core–shell nanowires using first-principles calculations and the detailed analysis of leakage current in Nd-substituted BiFeO3 through first principles calculations |
指導教授: |
歐陽淳厚 (浩)
Ouyang, Hao |
口試委員: |
李三保
Lee, Sanboh 邱顯浩 Chiou, Shan-Haw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 第一原理 、碳化矽 、光致發光 、鐵酸鉍 、漏電流 |
外文關鍵詞: | first-principle, silicon carbide, Photoluminescence, Bismuth ferrite, leakage current |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分
根據陳柏宇學長製作的碳化矽(SiC)奈米線(NWs),以及其光致發光(PL)光譜的藍移特徵,並基於樣品的STEM圖製作~1.5 nm 3C-、~1.0 nm 2H-、~1.0 nm 4H-和~1.5 nm 6H-SiC奈米線結構。堆垛層錯(SFs)會導致3C-SiC在局部產生類2H-、4H-和6H-SiC的堆疊排列,SiC奈米線PL光譜中藍移強光的來源通常被歸因於堆垛層錯,但是源於何種局部結構卻少有討論。本研究基於穿透式電子顯微鏡(TEM)影像建構沿[111]方向的3C-和沿[0001]方向的2H-、4H-和6H-SiC奈米線,並通過模擬來確定PL光譜中藍移強峰的來源。對NWs的計算結果表明,直徑為1.42 nm的3C-SiCNW的能隙為3.427 eV,此結構與最強的發射光的能量最接近。接面計算表明,隨著能量的增加,電荷將從SFs轉移到納米段內部。
第二部分
根據彭憶婷學姊製作的鐵酸鉍摻雜釹增強光伏效應的研究,本研究利用第一性原理計算來研究 鐵酸鉍(BFO)摻雜釹漏電流降低的機制。鐵酸鉍和摻雜釹的鐵酸鉍(BNFO)的狀態密度(DOS)可以在能隙中產生深陷阱態,陷阱電離能分別為 ~0.60 和~0.72eV。由於摻雜釹,BFO的漏電流隨著電離能的增加而降低。光學性質計算的結果還表明,BNFO在紅光至黃光範圍內具有更高的吸收率和更低的能量損失。從上述分析結果來看, BNFO在光伏電池的應用方面具有優勢。
Part 1
According to the silicon carbide (SiC) nanowires (NWs) made by Chen Bo-Yu. The blue shift characteristics of its photoluminescence (PL) spectrum, and based on the STEM image of the sample, make ~1.5 nm 3C-, ~1.0 nm 2H-, ~1.0 nm 4H- and ~1.5 nm 6H-SiC nanowire structure. Stacking faults lead 3C-SiC to locally produce 2H-, 4H- and 6H-SiC-like stacking arrangements. The source of blue-shifted strong light in the PL spectrum of SiC nanowires is usually attributed to stacking faults, but the local structure of the source is rarely discussed. This study constructs microstructures of 3C- along the [111] direction, and 2H-, 4H-, and 6H-SiCNWs along the [0001] direction based on the transmission electron microscope (TEM) micrographs and identifies the source of the strongest peak in the PL spectrum through simulations. The results of our calculations of the NWs show that the bandgap of 3C-SiCNWs with a diameter of 1.42 nm was 3.427 eV and this structure was related to the strongest emission. The interfacial calculations indicate that the charge will be transferred from the stacking faults (SFs) to the inside of the nanosegment as the energy increases.
Part 2
Following the work of “Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3” by Y.T. Peng et al. This study uses first-principles calculations to study the mechanism of reduced leakage current due to in the Nd-substituted case. Our simulations indicate that the density of state (DOS) of BiFeO3 (BFO) and Nd-substituted BiFeO3 (BNFO) can generate a deep-trap states in the band gap, and the trap ionization energies is are ~0.60 and ~0.72eV, respectively. The leakage current of BFO is reduced as the ionization energies increase due to the adding of Nd. The results of optical properties calculations also showed the higher absorptions and lower energy loss in the range of red to yellow light in BNFO. From results of analyses mentioned above, where BNFO is advantageous in terms of applications of photovoltaic cells.
1. Fan, J., Wu, X. and Chu, P. K. Low-dimensional SiC nanostructures: fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 51, 983–1031 (2006).
2. Morkoc, H. et al. Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76,1363–1398 (1994).
3. Wu, R., Zhou, K., Yue, C. Y., Wei, J. and Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 72, 1–60 (2015).
4. Chen, S., Li, W., Li, X. and Yang, W. One-dimensional SiC nanostructures: designed growth, properties, and applications. Prog. Mater Sci. 104, 138–214 (2019).
5. Cacchioli, A. et al. Cytocompatibility and cellular internalization mechanisms of SiC/SiO2 nanowires. Nano Lett. 14, 4458–4375 (2014).
6. J. B. Oliveira, J. M. Morbec and R. H. Miwa. Mechanical and electronic properties of SiC nanowires: An ab initio study. J. Appl. Phys. 121, 104302 (2017).
7. Zhiguo Wang, Shengjie Wang, Chunlai Zhang,Jingbo Li. First principles study of the electronic properties of twinned SiC nanowires. Journal of Nanoparticle Research 13, 185-191 (2011).
8. Y. Zhang, M. Nishitani-Gamo, C. Xiao, T. Ando, Synthesis of 3C-SiC nanowhiskers and emission of visible photoluminescence, J. Appl. Phys., 91, pp. 6066-6070 (2002)
9. Chaussende D, Ohtani N, Single Crystals of Electronic Materials (1st Ed.), Elsevier Ltd; pp. 142 (2019)
10. B.Y. Chen et al. Synthesis of SiC/SiO2 core–shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature. Sci Rep 11, 233 (2021).
11. Zhang et al. Ultraviolet photoluminescence from 3C-SiC nanorods. Appl. Phys. Lett. 89, 143101 (2006)
1. James R. Teague, Robert Gerson, W.J. James. Dielectric hysteresis in single crystal BiFeO3, Solid State Communications 8, 13 (1970)
2. Cheong, SW., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater 6, 13–20 (2007).
3. Alessio Filippetti and Nicola A. Hill. Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B 65, 195120 (2002)
4. G. A. Smolenskii, I. Chupis, Sov. Ferroelectromagnets Phys. Usp. 25, 475 (1982)
5. Kubel, F. & Schmid, H. Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO3. Acta Cryst. B 46, 698–702 (1990).
6. Quentin Micard, Guglielmo Guido Condorelli and Graziella Malandrino. Piezoelectric BiFeO3 Thin Films: Optimization of MOCVD Process on Si. Nanomaterials (Basel). 2020 Mar 28;10(4):630
7. Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, 180401 (2003)
8. Hu, C.-W.; Yen, C.-M., Feng, Y.-C.; Chen, L.-H.; Liao, B.-Z., Chen, S.-C.; Liao, M.-H. Multi-Ferroic Properties on BiFeO3/BaTiO3 Multi-Layer Thin-Film Structures with the Strong Magneto-Electric Effect for the Application of Magneto-Electric Devices. Coatings 2021, 11, 66.
9. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott. β phase and γ−β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008)
10. J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom. Optical band gap of BiFeO3 grown by molecular-beam epitaxy. Appl. Phys. Lett. 92, 142908 (2008)
11. S. Y. Yang, L. W. Martin, S. J. Byrnes T. E. Conry, S. R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J. L. Musfeldt, D. G. Schlom, J. W. Ager III, and R. Ramesh. Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009)
12. Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science. (2009)
13. Kenji Uchino, Yuichi Miyazawa and Shoichiro Nomura. High-Voltage Photovoltaic Effect in PbTiO3-Based Ceramics. Jpn. J. Appl. Phys. 21 1671 (1982)
14. K. X. Jin, Y. F. Li, Z. L. Wang, H. Y. Peng, W. N. Lin, A. K. K. Kyaw, Y. L. Jin, K. J. Jin, X. W. Sun, C. Soci, and Tom Wu. Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3. AIP Advances 2, 042131 (2012)
15. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha & S-W. Cheong. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature volume 429, pages392–395 (2004)
16. J. F. Scott. Multiferroic memories. Nature Materials (2007)
17. J.C. Yang, Q. He, P. Yu, Y.H. Chu, BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Ann. Rev. Mater. Res. 45, 249–275 (2015).
18. Xianwu Tang, Linghua Jin, Jianming Dai, Xuebin Zhu, Yuping Sun. Decreased oxygen vacancies and improved ferroelectric properties of the BiFeO3 thin films with high magnetic field annealing. Journal of Alloys and Compounds, 695, 2458-2463 (2017)
19. Can Wang, Mitsue Takahashi, Hidetoshi Fujino, Xia Zhao, Eiji Kume, Takeshi Horiuchi, and Shigeki Sakai. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. Journal of Applied Physics 99, 054104 (2006)
20. Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh. Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)
21. Yao Shuai, Shengqiang Zhou, Stephan Streit1, Helfried Reuther, Danilo Bürger, Stefan Slesazeck, Thomas Mikolajick, Manfred Helm, and Heidemarie Schmidt. Reduced leakage current in BiFeO3 thin films with rectifying contacts. Appl. Phys. Lett. 98, 232901 (2011)
22. Nan Wang, Xudong Luo, Lu Han, Zhiqiang Zhang, Renyun Zhang, Håkan Olin & Ya Yang. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters 12, Article number: 81 (2020)
23. A.H. Khan, S. Atiq, M.S. Anwar, S. Naseem, S.K. Abbas, Optimization of magnetodielectric coupling in Mn substituted BiFeO3 for potential memory devices. J. Mater. Sci. 29, 11812–11823 (2018).
24. J.-Z. Huang, Y. Wang, Y. Lin, M. Li, C.W. Nan, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition. J. Appl. Phys. 106, 063911 (2009).
25. C. Ostos, O. Raymond, N. Suarez-Almodovar, D. Bueno-Baques, L. Mestres, J.M. Siqueiros, Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering. J. Appl. Phys. 110, 024114 (2011).
26. M. Vagadia, A. Ravalia, P.S. Solanki, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Improvement in resistive switching of Ba-doped BiFeO3 films. Appl. Phys. Lett. 103, 033504 (2013)
27. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009).
28. D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010).
29. C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).
30. B. Xu, D. Wang, J. Iniguez, L. Bellaiche, Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015).
31. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015).
32. T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earth 31, 370–375 (2013).
33. Hiroshi Uchida. Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. Journal of Applied Physics 100, 014106 (2006)
1. Goknur Cambaz Büke. 22 Aug 2017, Epitaxial Graphene and Carbon Nanotubes on Silicon Carbide from: Nanomaterials Handbook, p.67. CRC Press Accessed on: 16 May 2021
2. Ramsdell L.S., "Studies on Silicon Carbide" Am. Mineral. 32, (1945), p.64-82
3. P. Shaffer, A review of the structure of silicon carbide, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 25 (1969), pp. 477-488
4. U. Lindefelt, H. Iwata, S. Öberg, P.R. Briddon, Stacking faults in 3C-, 4H-, and 6H-SiC polytypes investigated by an ab initio supercell method, Phys. Rev. B, 67 (2003), Article 155204
5. Chaussende D, Ohtani N, Single Crystals of Electronic Materials (1st Ed.), Elsevier Ltd; 2019. pp. 142
6. W.S. Yoo, H. Matsunami. Solid-State Phase Transformation in Cubic Silicon Carbide. Jpn. J. Appl. Phys., 1991, vol. 30(3R), pp. 545-553.
7. Y. Inomata, M. Mikimoto, Z. Inoue, and H. Tanaka, Thermal Stability of the Basic Structures of SiC, J. Ceram. Assoc. Jpn., 77 [4] (1969), pp. 130135
8. R. S. Wagner, and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964)
9. Joan M. Redwing, Xin Miao, Xiuling Li, Handbook of Crystal Growth (Second Edition). 2015 North-Holland, pp. 401.
10. V. Schmidt, S. Senz, U. Gosele, The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 80, 445–450 (2005)
11. V. Schmidt, S. Senz, U. Gosele, “Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires”. Chem. Rev. 2010, 110, 361–388
12. B.Y. Chen et al. Synthesis of SiC/SiO2 core-shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature. Sci Rep 11, 233 (2021).
13. Pierre-Adrien Mante, Constantinos C. Stoumpos, Mercouri G. Kanatzidis, Arkady Yartsev. Electron–acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons. Nat Commun 8, 14398 (2017)
14. https://ned.ipac.caltech.edu/level5/Sept03/Li/Li4.html
15. Charles Kittel. Introduction to solid state physics (eight edit). John Wiley & Sons, Inc (2005). pp161-184
16. Fermi, Enrico (1926). "Sulla quantizzazione del gas perfetto monoatomico". Rendiconti Lincei (in Italian). 3: 145–9
17. Dirac, Paul A. M. (1926). "On the Theory of Quantum Mechanics". Proceedings of the Royal Society A. 112 (762): 661–77.
18. Levine, Ira N. (1991). Quantum Chemistry. Englewood Cliffs, New jersey: Prentice Hall. pp. 455–544.
19. P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964).
20. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1965).
21. M. C. Payne, M.P.T., D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys, 1992. 64(4)(1045).
22. Perdew, John P.; Chevary, J. A.; Vosko, S. H.; Jackson, Koblar A.; Pederson, Mark R.; Singh, D. J.; Fiolhais, Carlos (1992). "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation". Physical Review B. 46 (11): 6671–6687.
23. Becke, Axel D. (1988). "Density-functional exchange-energy approximation with correct asymptotic behavior". Physical Review A. 38 (6): 3098–3100.
24. https://www.compositesworld.com/articles/testing-is-inefficient-material-simulations-advantage-over-the-status-quo
25. Neil W. Ashcroft, N.D.M., Solid State Physics. 1976, New York, 1sted: Holt, Rinehart and Winston Inc.
26. Marder, M.P., Condensed matter physics. 2000: John Wiley and Sons.
27. Furthmuller, G.K.a.J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996. 54(11169).
28. Pauli, W. (1925). "Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren". Zeitschrift für Physik. 31 (1): 765–783
29. Fock, V., 1930. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems. The European Physical Journal A 61, 126–148.
30. Hartree, D.R., Hartree, W. Self-consistent field, with exchange, for beryllium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 150, 9–33 (1935)
31. V. Fock. Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik volume 75, pages622–647 (1932)
32. Thomas, L. H. (1927). "The calculation of atomic fields". Proc. Camb. Phil. Soc. 23 (5): 542–548.
33. Fermi, Enrico (1927). "Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo". Rend. Accad. Naz. Lincei. 6: 602–607.
34. Parr, Robert G; Yang, Weitao. Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press. 1994
35. Dirac, P. A. M. Note on exchange phenomena in the Thomas-Fermi atom. Proc. Cambridge Phil. Roy. Soc. 1930, 26 (3): 376–385
36. E. Wigner. Effects of the electron interaction on the energy levels of electrons in metals. Transactions of the Faraday Society 34, 678
37. D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 45, 566 (1980)
38. John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. (1992)
39. John P. Perdew, Kieron Burke, and Matthias Ernzerhof. "Generalized Gradient Approximation Made Simple". Phys. Rev. Lett. 77, 3865 (1996)
40. John P. Perdew and Mel Levy., "Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities". Phys. Rev. Lett. 51, 1884 (1983)
41. J. P. Perdew, Int. J. Quantum Chem., "Density functional theory and the band gap problem". Quantum Chem. Symp. 19, 497 (1986)
42. M. Grüning, A. Marini, and A. Rubio, "Density functionals from many-body perturbation theory: The band gap for semiconductors and insulators" J. Chem. Phys. 124, 154108 (2006).
43. Strong Coulomb Correlations in Electronic Structure Calculations, edited by V. I. Anisimov (Gordon and Breach, Amsterdam, 2000).
44. J. P. Perdew, M. Ernzerhof, and K. Burke, "Rationale for mixing exact exchange with density functional approximations". J. Chem. Phys. 105, 9982 (1996).
45. M. Ernzerhof, J. P. Perdew, and K. Burke, "Coupling-constant dependence of atomization energies". Int. J. Quantum Chem. 64, 285 (1997)
46. M. Ernzerhof and G. E. Scuseria, "Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional". J. Chem. Phys. 110, 5029 (1999)
47. J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid functionals based on a screened Coulomb potential", J. Chem. Phys. 118, 8207 (2003).
48. J. Heyd and G. E. Scuseria, "Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional ", J. Chem. Phys. 121, 1187 (2004).
49. T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Diameter-Controlled Synthesis of Carbon Nanotubes", J. Phys. Chem. B 104, 2794 (2000).
50. Aliaksandr V Krukau et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. 125 224106 (2006).
51. Goffinet, M., et al., Hybrid functional study of prototypical multiferroic bismuth ferrite. Phys. Rev. B, 2009. 79(1): p. 014403
52. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 1993. 98(7): p. 5648-5652.
53. Gill, P.M.W., B.G. Johnson, and J.A. Pople, A standard grid for density functional calculations. Chemical Physics Letters, 1993. 209(5): p. 506-512.
54. Neil W. Ashcroft, N.D.M., Solid State Physics. Vol. chap. 8. 1976, New York, 1sted: Holt, Rinehart and Winston Inc.
55. H. Hellmann. A New Approximation Method in the Problem of Many Electrons. J. Chem. Phys. 3, 61 (1935)
56. Schwerdtfeger, P., The Pseudopotential Approximation in Electronic Structure Theory, ChemPhysChem, August 2011,
57. http://cmsn.lbl.gov/html/PEtot/PEtot_planewave.html
58. Michael Teter. Additional condition for transferability in pseudopotentials. Phys. Rev. B 48 (8), 5031 (August 1993).
59. A. Filippetti, David Vanderbilt, W. Zhong, Yong Cai and G. B. Bachelet. Chemical hardness, linear response, and pseudopotential transferability. Phys. Rev. B 52 (16), 11793 (October 1995).
60. vasp manual: http://wolf.ifj.edu.pl/workshop/work2008/tutorial/vasp.pdf.
61. Daniele Varsano, First principles description of response functions in low dimensional systems (2006)
62. G. Kresse and J. Furthmuller. Modern Ab-Initio Calculations on Modified Tomas-Fermi-Dirac Theory. Comput. Mater. Sci. 6, 15 (1996).
63. G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
64. G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)
65. Gunnarsson, V.I.A.a.O., Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B, 1991. 43(7570).
66. V. I. Anisimov, F.A., and A. I. Liechtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter 1997. 9(767).
67. J. Y. Fan, X. L. Wu, and P. K. Chu, “Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties,” Prog. Mater. Sci. 51, 983–1031 (2006).
68. H. Morkoc et al., “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994). Xinyuan Zhao, C. M.Wei, L. Yang, M.Y. Chou. Quantum Confinement and Electronic Properties of Silicon Nanowires. Phys. Rev. Lett. 92, 236805 (2004)
69. R. Wu, K. Zhou, C. Y. Yue, J. Wei, and Y. Pan, “Recent progress in synthesis, properties and potential applications of SiC nanomaterials,” Prog. Mater. Sci. 72, 1–60 (2015).
70. S. Chen, W. Li, X. Li, and W. Yang, “One-dimensional SiC nanostructures: Designed growth, properties, and applications,” Prog. Mater. Sci. 104, 138–214 (2019).
71. A. Cacchioli et al., “Cytocompatibility and cellular internalization mechanisms of SiC/SiO2 nanowires,” Nano Lett. 14, 4368–4375 (2014).
72. Zhang et al. Ultraviolet photoluminescence from 3C-SiC nanorods. Appl. Phys. Lett. 89, 143101 (2006).
73. H.T. Liu, Z.H. Huang, J.H. Huang, M.H. Fang, Y.G. Liu, X.W. Wu, Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties, J. Mater. Chem. C, 2 (2014), pp. 7761-7767
74. Lianzhen Cao, Hong Jianga, Hang Song, Zhiming Li, Guoqing Miao. Thermal CVD synthesis and photoluminescence of SiC/SiO2 core–shell structure nanoparticles. Journal of Alloys and Compounds 489 (2010) 562–565
75. H.P. Iwata, U. Lindefelt, S. Öberg and P.R. Briddon. Stacking faults in silicon carbide. Physica B 165, 340-342 (2003).
76. R. Rurali. Electronic and structural properties of silicon carbide nanowires. Phys. Rev. B 71, 205405 (2005).
77. J. B. Oliveira, J. M. Morbec and R. H. Miwa. Mechanical and electronic properties of SiC nanowires: An ab initio study. J. Appl. Phys. 121, 104302 (2017).
78. Binghai Yan, Gang Zhou, Wenhui Duan, Jian Wu, and Bing-Lin Gu. Uniaxial-stress effects on electronic properties of silicon carbide nanowires. Appl. Phys. Lett. 89, 023104 (2006).
79. X. L. Wu, J.Y. Fan, T. Qiu, X. Yang, G. G. Siu, and Paul K. Chu. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Phys. Rev. Lett. 94, 026102 (2005)
80. Clive Harris, E.P. O Reilly. Nature of the band gap of silicon and germanium nanowires Physica E: Low-dimensional Systems and Nanostructures, 32, 1–2 (2006).
1. F. Kubel and H. Schmid, Acta Crystallogr., Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Cryst. B46, 698–702 (1990)
2. Gustau Catalan, James F. Scott. Physics and Applications of Bismuth Ferrite. Adv. Mater., 21, 2463–2485 (2009)
3. Poorva SHARMA, Ashwini KUMAR, Dinesh VARSHNEY. Rare earth (La) and metal ion (Pb) substitution induced structural and multiferroic properties of bismuth ferrite. Journal of Advanced Ceramics. 4(4): 292–299 (2015)
4. Sverre M. Selbach, Mari-Ann Einarsrud, and Tor Grande. On the Thermodynamic Stability of BiFeO3. Chem. Mater. 21, 169–173 (2009)
5. S. Karimi, I. M. Reaney, I. Levin, and I. Sterianou. Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)
6. Nan Wang, Xudong Luo, Lu Han, Zhiqiang Zhang, Renyun Zhang, Håkan Olin & Ya Yang. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters 12, Article number: 81 (2020)
7. D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010).
8. C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).
9. B. Xu, D. Wang, J. Iniguez, L. Bellaiche, Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015).
10. J.-Z. Huang, Y. Wang, Y. Lin, M. Li, C.W. Nan, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition. J. Appl. Phys. 106, 063911 (2009).
11. J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Nonpolar resistive switching in Mn-doped BiFeO3 thin films by chemical solution deposition. Appl. Phys. Lett. 101, 062902 (2012).
12. Z. Lu, X. Yang, C. Jin, P. Li, J.-G. Wan, J.-M. Liu, Nonvolatile electric-optical memory controlled by conductive filaments in Ti-doped BiFeO3. Adv. Electron. Mater. 4, 1700551 (2018).
13. T. Zheng, J. Wu, Effects of site engineering and doped element types on piezoelectric and dielectric properties of bismuth ferrite lead-free ceramics. J. Mater. Chem. C 3, 11326–11334 (2015).
14. S. Fujino, M. Murakami, V. Anbusathaiah, S.H. Lim, V. Nagarajan et al., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite. Appl. Phys. Lett. 92, 202904 (2008).
15. J.T. Heron, D.G. Schlom, R. Ramesh, Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1, 021303 (2014).
16. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry et al., Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).
17. L. You, F. Zheng, L. Fang, Y. Zhou, L.Z. Tan et al., Enhancing ferroelectric photovoltaic effect by polar order engineering. Sci. Adv. 4, eaat3438 (2018).
18. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).
19. J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073–1074 (1970).
20. P. Curie. Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. J. Phys. Theor. Appl. 3, 393-415 (1894)
21. V.Annapu Reddy, N.P.Pathak, R.Nath. Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. Journal of Alloys and Compounds 543, 5, 206-212 (2012)
22. Joel Bertinshaw, Ronald Maran, Sara J. Callori, Vidya Ramesh, Jeffery Cheung, Sergey A. Danilkin, Wai Tung Lee, Songbai Hu, Jan Seidel, Nagarajan Valanoor & Clemens Ulrich. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nature Communications 7, Article number: 12664 (2016)
23. J.Y. Chauleau, E. Haltz, C. Carretero, S. Fusil, M. Viret, Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017).
24. H. Deng, H. Deng, P. Yang, J. Chu, Effect of Cr doping on the structure, optical and magnetic properties of multiferroic BiFeO3 thin films. J. Mater. Sci. 23, 1215–1218 (2012).
25. Y.J. Yoo, J.S. Hwang, Y.P. Lee, J.S. Park, J.H. Kang, J. Kim, B.W. Lee, M.S. Seo, High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound. J. Appl. Phys. 114, 163902 (2013).
26. J. Chen, Y. Wang, Y. Deng, Competition between compressive strain and Mn doping on tuning the structure and magnetic behavior of BiFeO3 thin films. Funct. Mater. Lett. 8, 1550066 (2015).
27. William Ratcliff, Jeffrey W Lynn, Valery Kiryukhin, Prashant Jain & Michael R Fitzsimmons. Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering. npj Quantum Materials 1, Article number: 16003 (2016)
28. Sudipta Goswami, Dipten Bhattacharya, and P. Choudhury. Particle size dependence of magnetization and noncentrosymmetry in nanoscale BiFeO3. Journal of Applied Physics 109, 07D737 (2011)
29. E. Becquerel. "Mémoire sur les effets électriques produits sous l'influence des rayons solaires". Comptes Rendus. 9: 561–567 (1839)
30. Charles Kittel. Introduction to solid state physics (eight edit). John Wiley & Sons, Inc (2005). Pp187-207
31. W. Shockley, "The theory of p-n junctions in semiconductors and p-n junction transistors," in The Bell System Technical Journal, 28, 3, 435-489 (1949)
32. https://highscope.ch.ntu.edu.tw/wordpress/?p=74230
33. Beddiaf Zaidi, 2018. "Introductory Chapter: Introduction to Photovoltaic Effect," Chapters, in: Beddiaf Zaidi (ed.), Solar Panels and Photovoltaic Materials, IntechOpen
34. Albert Polman1, Mark Knight1, Erik C. Garnett1, Bruno Ehrler1, Wim C. Sinke. Photovoltaic materials: Present efficiencies and future challenges. Science, 352, 4424 (2016)
35. Proctor, C.M., and Nguyen, Thuc-Quyen, Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells. Appl. Phys. Lett., 106 083301 (2015)
36. M. Popadic, G. Lorito and L. K. Nanver, "Analytical Model of I-V Characteristics of Arbitrarily Shallow p-n Junctions," in IEEE Transactions on Electron Devices, 56, 1, 116-125 (2009)
37. Sinton, R.A., Cuevas, A., Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data. Appl. Phys. Lett. 69, 2510 (1996)
38. Nzonzolo, D. Lilonga-Boyenga, G. Sissoko. Illumination Level Effects on Macroscopic Parameters of a Bifacial Solar Cell. Energy and Power Engineering 06, 25-36 (2014)
39. Qi, B. and J. Wang, Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 15(23): p. 8972 8982. (2013)
40. Ramalingam, K., Indulkar, C., 2017. Solar Energy and Photovoltaic Technology, pp. 69–147
41. R. R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K. M. Edmondson, D. C. Law, C. M. Fetzer, S. Mesropian, and N. H. Karam. Band gap-voltage offset and energy production in next-generation multijunction solar cells. Progress in Photovoltaics: Research and Applications 19, 797–812.
42. André Augustoa, Stanislau Y. Herasimenka, Richard R. King, Stuart G. Bowden, and Christiana Honsberg. Analysis of the recombination mechanisms of a silicon solar cell with low bandgap-voltage offset. Journal of Applied Physics 121, 205704 (2017)
43. F.Meillaud, A.ShahC.Droz, E.Vallat-Sauvain, C.Miazza. Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells, 90, 18-19, 2952-2959 (2006)
44. Can Wang, Mitsue Takahashi, Hidetoshi Fujino, Xia Zhao, Eiji Kume, Takeshi Horiuchi, and Shigeki Sakai. Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. Journal of Applied Physics 99, 054104 (2006)
45. Chin-Feng Chung, Jen-Po Lin, and Jenn-Ming Wu. Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 88, 242909 (2006)
46. I.Jabbari, M.Baira, H.Maaref, R.Mghaieth. Evidence of Poole-frenkel and Fowler-Nordheim tunneling transport mechanisms in leakage current of (Pd/Au)/Al0.22Ga0.78N/GaN heterostructures. Solid State Communications, 314–315, 113920 (2020)
47. W. Schottky. Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Zeitschrift für Physik 113, pages367–414 (1939)
48. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Clarendon, Oxford, 1940)
49. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970)
50. X. H. Zhu, H. Béa, M. Bibes, S. Fusil1, K. Bouzehouane, E. Jacquet, A. Barthélémy, D. Lebeugle, M. Viret, and D. Colson. Thickness-dependent structural and electrical properties of multiferroic Mn-doped BiFeO3 thin films grown epitaxially by pulsed laser deposition. Appl. Phys. Lett. 93, 082902 (2008)
51. J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev. 54, 647 (1938)
52. Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh. Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)
53. Yao Shuai, Shengqiang Zhou, Stephan Streit1, Helfried Reuther, Danilo Bürger, Stefan Slesazeck, Thomas Mikolajick, Manfred Helm, and Heidemarie Schmidt. Reduced leakage current in BiFeO3 thin films with rectifying contacts. Appl. Phys. Lett. 98, 232901 (2011)
54. D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 20, 1108–1115 (2010).
55. C.-J. Cheng, D. Kan, V. Anbusathaiah, I. Takeuchi, V. Nagarajan, Microstructure-electromechanical property correlations in rare-earth-substituted BiFeO3 epitaxial thin films at morphotropic phase boundaries. Appl. Phys. Lett. 97, 212905 (2010).
56. B. Xu, D. Wang, J. Iniguez, L. Bellaiche, Finite-temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2015).
57. H. Singh, K.L. Yadav, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 41, 9285–9295 (2015).
58. T.D. Rao, T. Karthik, S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Earth 31, 370–375 (2013).
59. X. Xue, G. Tan, H. Ren, A. Xia, Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method. Ceram. Int. 39, 6223–6228 (2013).
60. Arnold, D.C., Composition Driven Structural Phase Transitions in Rare Earth Doped BiFeO3 Ceramics: A Review. IEEE tranasctions on ultrasonics, ferrorlrctrics, and frequencyvcontrol, 2015. 62(1).
61. Dawei Wang, Meili Wang, Fengbin Liu, Yan Cui , Quanliang Zhao, Huajun Sun, Haibo Jin, Maosheng Cao. Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceramics International 41, 7, 8768-8772 (2015)
62. Yuan Zhang, Yi Zhang, Quan Guo, Dongwen Zhang, Shuaizhi Zheng, Ming Feng, Xiangli Zhong, Congbing Tan, Zhihui Lu, Jinbin Wang, Pengfei Hou, Yichun Zhoua and Jianmin Yuan. Enhanced electromagnon excitations in Nd-doped BiFeO3 nanoparticles near morphotropic phase boundaries. Phys.Chem.Chem.Phys., 21, 21381 (2019)
63. Alexei A. Belik, Hitoshi Yusa, Naohisa Hirao, Yasuo Ohishi, and Eiji Takayama-Muromachi. Structural Properties of Multiferroic BiFeO3 under Hydrostatic Pressure. Chem. Mater., 21, 14, 3400–3405 (2009)
64. H. Yang, H. M. Luo, H. Wang, I. O. Usov, N. A. Suvorova, M. Jain1, D. M. Feldmann, P. C. Dowden, R. F. DePaula, and Q. X. Jia. Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett. 92, 102113 (2008)
65. Qiang Xu, Mushtaq Sobhan, Qian Yang, Franklin Anariba, Khuong Phuong Ong and Ping Wu. The role of Bi vacancies in the electrical conduction of BiFeO3: a first-principles approach. Dalton Trans., 43, 10787-10793 (2014)
66. Tadej Rojac, Andreja Bencan, Goran Drazic, Naonori Sakamoto, Hana Ursic, Bostjan Jancar, Gasper Tavcar, Maja Makarovic, Julian Walker, Barbara Malic & Dragan Damjanovic. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nature Materials 16, pages322–327 (2017)
67. I. G. Austin, N. F. Mott. Metallic and Nonmetallic Behavior in Transition Metal Oxides. Science 03, 168, 3927 71-77
68. Burak Himmetoglu, Andrea Floris, Stefano de Gironcoli, Matteo Cococcioni. Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems. International Journal of Quantum Chemistry 114, 14-49.
69. J. Hubbard. Electron correlations in narrow energy bands. Proc. Roy. Soc. Lond. A 276, 238 (1963)
70. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, S.-W. Cheong. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science (2009)
71. Yi-Ting Peng, Shan-Haw Chiou, Ching-Hung Hsiao, Chuenhou (Hao) Ouyang and Chi-Shun Tu. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3. Scientific Reports 7, 45164 (2017)
72. Chi-Shun Tu, Pin-Yi Chen, Cheng-Sao Chen, R. R. Chien, V. Hugo Schmidt, Chun-Yen Lin. Photovoltaic conversion and quantum efficiency in perovskite multiferroic ceramics. Acta Materialia 149, 1, 248-255 (2018)
73. Grégory Geneste, Charles Paillard, and Brahim Dkhil. Polarons, vacancies, vacancy associations, and defect states in multiferroic BiFeO3. Phys. Rev. B 99, 024104 (2019)
1. B.Y. Chen et al. Synthesis of SiC/SiO2 core–shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature. Sci Rep 11, 233 (2021).
2. Zhou, S.; Sheng, J.; Yang, Z.; Zhang, X, Enhanced Ion Transport in Densified CNT Arrays, J. Mater. Chem. A, 6 (2018), pp. 8763 8771
3. S.K. Yang, W.P. Cai, H.B. Zeng, X.X. Xu, Ultra-fine -SiC quantum dots fabricated by laser ablation in reactive liquid at room temperature and their violet emission, J. Mater Chem, 19 (2009), pp. 7119-7123
4. PerkinElmer LS 55-Front surface accessory
5. http://nscric.site.nthu.edu.tw/p/404-1186-122211.php?Lang=zh-tw
6. PerkinElemer LS 55 manual.
7. http://jp-minerals.org/vesta/en/download.html
8. K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272-1276 (2011).
9. R. Rurali. Electronic and structural properties of silicon carbide nanowires. Phys. Rev. B 71, 205405 (2005).
10. Huheey, pps. A-21 to A-34; T.L. Cottrell, "The Strengths of Chemical Bonds," 2nd ed., Butterworths, London, 1958; B. deB. Darwent, "National Standard Reference Data Series," National Bureau of Standards, No. 31, Washington, DC, 1970; S.W. Benson, J. Chem. Educ., 42, 502 (1965).
11. P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964).
12. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1965).
13. Aliaksandr V Krukau et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. 125 224106 (2006).
14. G. Kresse and J. Furthmuller. Modern Ab-Initio Calculations on Modified Tomas-Fermi-Dirac Theory. Comput. Mater. Sci. 6, 15 (1996).
15. G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
16. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
17. J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
18. C.-L. Fu and K.-M. Ho. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Phys. Rev. B 28 5480 (1983).
19. O. Grotheer, M. FaKhnle, Correction terms to the density-functional ground-state energy arising from occupation number broadening. Phys. Rev. B 58 13459 (1998).
20. Michael P. Teter, Michael C. Payne and Douglas C. Allan. Solution of Schrödinger's equation for large systems. Phys. Rev. B 40, 12255 (1989).
21. D. M. Bylander, Leonard Kleinman and Seongbok Lee. Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B 42, 1394 (1990).
1. Chi-Shun Tu, Cheng-Sao Chen, Pin-Yi Chen, Hsiu-Hsuan Wei, V.H.Schmidt, Chun-Yen Lin, J.Anthoniappen, Jenn-Min Lee. Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: The roles of domain structure and electronic state. Journal of the European Ceramic Society 36 (2016) 1149–1157
2. Yi-Ting Peng, Shan-Haw Chiou, Ching-Hung Hsiao, Chuenhou (Hao) Ouyang & Chi-Shun Tu. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3. Scientific Reports 7, Article number: 45164 (2017)
3. Kumar, A., Varshney, D. "Crystal structure refinement of Bi1-xNdxFeO3 multiferroic by the Rietveld method." Ceram. Int. 2012, 38, 3935.
4. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
5. W. Kohn and L. J. Sham, “Self-Consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965).
6. Vladimir I Anisimov, F Aryasetiawan and A I Lichtenstein. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter 9 767 (1997)
7. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998)
8. Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)
9. G. Kresse and J. Furthmuller. Modern Ab-Initio Calculations on Modified Tomas-Fermi-Dirac Theory. Comput. Mater. Sci. 6, 15 (1996).
10. G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
11. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
12. J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
13. Peter E. Blöchl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994)
14. Michael P. Teter, Michael C. Payne and Douglas C. Allan. Solution of Schrödinger's equation for large systems. Phys. Rev. B 40, 12255 (1989).
15. D. M. Bylander, Leonard Kleinman and Seongbok Lee. Self-consistent calculations of the energy bands and bonding properties of B12C3. Phys. Rev. B 42, 1394 (1990).
16. C.-L. Fu and K.-M. Ho. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Phys. Rev. B 28 5480 (1983).
17. O. Grotheer, M. FaKhnle, Correction terms to the density-functional ground-state energy arising from occupation number broadening. Phys. Rev. B 58 13459 (1998).
18. A. M. Fox, Optical Properties of Solids. pp. 6,7 (2001)
1. B.Y. Chen et al. Synthesis of SiC/SiO2 core–shell nanowires with good optical properties on Ni/SiO2/Si substrate via ferrocene pyrolysis at low temperature. Sci Rep 11, 233 (2021).
2. Zhang et al. Ultraviolet photoluminescence from 3C-SiC nanorods. Appl. Phys. Lett. 89, 143101 (2006).
3. Hyun Woo Shim, Yongfeng Zhang, and Hanchen Huang. Twin formation during SiC nanowire synthesis. Journal of Applied Physics 104, 063511 (2008)
4. K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272-1276 (2011).
5. Hisaomi Iwata, Ulf Lindefelt, Sven Öberg and Patrick R. Briddon. Localized electronic states around stacking faults in silicon carbide Phys. Rev. B 65, 033203 (2001).
6. H.P. Iwata, U. Lindefelt, S. Öberg and P.R. Briddon. Stacking faults in silicon carbide. Physica B 165, 340-342 (2003).
7. P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964).
8. W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133 (1965).
9. Bind, J. "PHASE TRANSFORMATION DURING HOT-PRESSING OF CUBIC SiC". Mater. Res. Bull. 1978, 13, 91-96.
10. Aliaksandr V Krukau et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys. 125 224106 (2006).
11. Jochen Heyd, Gustavo E. Scuseria and Matthias Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).
12. J. Heyd and G. E. Scuseria, "Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional ", J. Chem. Phys. 121, 1187 (2004).
13. Z. Wang, M. Zhao, T. He, H. Zhang, X. Zhang, Z. Xi, S. Yan, X. Liu, and Y. Xia, “Orientation-dependent stability and quantum-confinement effects of silicon carbide nanowires,” J. Phys. Chem. C 113, 12731–12735 (2009).
14. Jean-Christophe Charlier, Xavier Blasé and Stephan Roche. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677 (2007)
15. Tyndall National Institute, Lee Maltings, Cork, Ireland. Nature of the band gap
of silicon and germanium nanowires Physica E: Low-dimensional Systems and Nanostructures, 32, 1-2 (2006).
16. Fang C.M. et al. The electronic structure of the metastable layer compound 1T-CrSe2. J. Phys.: Condens., Matter 9, (1997) 10173-10184.
17. Haitao Liu et al. Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties. J. Mater. Chem. C, 2, 7761 (2014).
18. Meng Zhang et al. Ultralong SiC/SiO2 Nanowires: Simple Gram-Scale Production and Their Effective Blue-Violet Photoluminescence and Microwave Absorption Properties. ACS Sustain. Chem. Eng. 6, 3596-3603 (2018).
19. Renbing Wu, Bailin Zha, Liuying Wang, Kun Zhou and Yi Pan. Core-shell SiC/SiO2 heterostructures in nanowires. Physica Status Solidi (A) 209, 553-558 (2012).
20. Philip G. Neudeck. Progress in silicon carbide semiconductor electronics technology. Journal of Electronic Materials 24, 283-288 (1995).
21. Jihoon Choi. SiC Nanowires: from growth to related devices. Other. Université Grenoble Alpes, (2013).
22. X. L. Wu, J.Y. Fan, T. Qiu, X. Yang, G. G. Siu, and Paul K. Chu. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Phys. Rev. Lett. 94, 026102 (2005).
1. Jorge Quintanilla1 and Chris Hooley. The strong-correlations puzzle. Jorge Quintanilla and Chris Hooley 2009 Phys. World 22 (06) 32
2. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864 (1964).
3. W. Kohn and L. J. Sham, “Self-Consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133 (1965)
4. Vladimir I Anisimov, F Aryasetiawan and A I Lichtenstein. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter 9 767 (1997)
5. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998)
6. Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)
7. Grégory Geneste, Charles Paillard, and Brahim Dkhil. Polarons, vacancies, vacancy associations, and defect states in multiferroic BiFeO3. Phys. Rev. B 99, 024104 (2019)
8. Yi-Ting Peng, Shan-Haw Chiou, Ching-Hung Hsiao, Chuenhou (Hao) Ouyang & Chi-Shun Tu. Remarkably enhanced photovoltaic effects and first-principles calculations in neodymium doped BiFeO3. Scientific Reports 7, Article number: 45164 (2017)
9. J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev. 54, 647
10. Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh. Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)
11. Wei SeaChang, Chi-Shun Tu, Pin-Yi Chen, Cheng-Sao Chen, Chun-Yen Lin, Kuei-Chih Feng, Yi Lin Hsieh, You Hsuan Huang. Effects of Fe 3d–O 2p and Bi 6sp–O 2p orbital hybridizations in Nd doped BiFeO3 ceramics. Journal of Alloys and Compounds 710, 5, 670-679 (2017)
12. ChaoHe, Zu-Ju Ma, Bao-Zhen Sun, Rong-Jian Sa, Kechen Wu. The electronic, optical and ferroelectric properties of BiFeO3 during polarization reversal: A first principle study. Journal of Alloys and Compounds 623, 393-400 (2015)
13. J. W. WARNER, L. S. BARTELL, AND S. M. BLINDER. Electron Correlation and Hund’s Rule. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, VOL. XVIII, 921-935 (1980)
14. Dachraoui, W., Hadermann, J., Abakumov, A.M., Tsirlin, A.A., Batuk, D., Glazyrin, K., Mccammon, C., Dubrovinsky, L., Van Tendeloo, G. Local Oxygen-Vacancy Ordering and Twinned Octahedral Tilting Pattern in the Bi0.81Pb0.19FeO2.905 Cubic Perovskite. Chemistry of Materials 24, 1378–1385 (2012)
15. http://lamp.tu-graz.ac.at/~hadley/ss1/bzones/jsmol_bzones/rhombo/rhombo.html
16. A. M. Fox, Optical Properties of Solids. pp. 6,7 (2001)
17. Ahn C C (ed.) (2004) Transmission electron energy loss spectrometry in material science and the EELS Atlas, Wiley, Weinheim, Germany,
18. Sedong Kim, Hyomin Jeong, Jin Young Park, Seung Yeop Baek, Ajeong Leea and Soon-Ho Choi. Innovative flat-plate solar collector (FPC) with coloured water flowing through a transparent tube. RSC Advances 9, 24192–24202 (2019)