研究生: |
吳明仲 Ming-Chung Wu |
---|---|
論文名稱: |
快速估計微影製程中的特徵尺寸之空間影像模擬器 An Aerial Image Simulator for Fast Critical Dimension Estimation of Lithography Process |
指導教授: |
劉靖家
Jing-Jia Liou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 微影模擬 、空間影像 、特徵尺寸 |
外文關鍵詞: | lithography simulation, aerial image, critical dimension |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現今半導體製程不斷的快速進步,元件中的最小線寬亦愈趨縮減,使得製程中所產生的製程變異影響更鉅。在積體電路量產之前,評估電路本身的效能是非常重要的,而在現今的半導體製程中,光學微影是其中最關鍵的製程步驟。因此,透過光學微影模擬工具,我們可以很迅速的檢查出製程變動對於電路的影響,進而估測電路的效能,並且在製造電路之前改善其設計。空間影像(aerial image)模擬是微影模擬最主要的步驟,影響關鍵尺寸(Critical Dimension, CD)的重要部份。在這篇論文中,我們探討了數種不同的空間影像模型,並且把焦點放在透鏡像差(lens aberration)對關鍵尺寸所產生的影響。我們的模型是以Hopkins理論 [1] 為基礎,對於部分同調性光源(partially coherent illumination),利用透射相交係數(Transmission Cross-Coefficient, TCC)模擬整個曝光系統。我們把空間影像模擬產生出來的結果,跟U.C. Berkeley大學所提供的SPLAT軟體做比較,並且得到非常吻合的結果。接著在模擬製程中顯影(development)及蝕刻(etching)的步驟,我們利用了門檻模型以便於迅速得到關鍵尺寸。為了提升模擬器的效率,在模擬過程中,我們避免了對光學強度過低的區域作計算,對於空間密度較低的光罩圖形(layout pattern),可大大的減少模擬時間。最後,我們應用我們的模擬器,在實際電路中之數種不同的基本組成單元(cell),並且驗證我們的方法可以得到效能上的提升。
As the feature sizes in today’s semiconductor process become smaller, process variations have
great influences on the performance of integrated circuit (IC). Evaluating IC’s performance before
mass production is quite important and optical lithography is the key step in modern semiconductor
process. As a result, by optical lithography simulation, we can quickly examine the performance
of the ICs affected by process variations and furthermore modify the design before fabrication.
Aerial image simulation is the critical step in lithography simulation when determining the critical
dimension (CD). We investigate various simulation models of aerial image and focus on the
phenomenon of lens aberrations. Our model is based on Hopkins theory [1] which describes exposure
system via transmission cross-coefficient (TCC) for partially coherent systems. We show
the simulated aerial images agree well with the results from the simulator SPLAT [2]. A threshold
resist model is then applied to determine the CDs. To improve the performance, our simulator is
implemented to avoid calculations on low-intensity regions. Finally, several cell-level layouts are
used for demonstrating out simulator.
[1] J. W. Goodman, Introduction to Fourier Optics. Englewood, Colo.: Roberts & Co, 2005.
[2] LAVA, UC Berkrley TCAD, http://cuervo.eecs.berkeley.edu/Volcano/, University of California
at Berkeley, 2001.
[3] P. R. Choudhury, Handbook of microlithography, micromachining and microfabrication.
Bellingham, Washington, USA: SPIE, 1997.
[4] SPLAT 6.0 User’s Guide, http://cuervo.eecs.berkeley.edu/Volcano/, University of California
at Berkeley, 2001.
[5] Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and
mask requirements,” Optical Society of America, vol. 11, no. 9, Sept. 1994.
[6] Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting structure in fast aerial image
compuations for integrated circuit patterns,” IEEE Trans. on Semiconductor Manufacturing,
vol. 10, no. 1, Feb. 1997.
[7] N. Cobb, “Sum of coherent systems decomposition by svd,” University of California at
Berkeley, Tech. Rep., Sept. 1995.
[8] N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit,”
PhD Dissertation, Dept. Electrical Engineering and Computer Science, University of California
at Berkeley, 1998.
[9] M. D. Smith, J. D. Byers, and C. A. Mack, “A comparison between the process windows
calculated with full and simplified resist models,” in Optical Microlithography XV, Proc. of
SPIE, vol. 4691, 2002.
[10] O. K. Ersoy, Diffraction, Fourier Optics and Imaging. Hoboken, New Jersey: John Wiley
& Sons, Inc., 2007.
[11] S. D. Slonaker, “Visualizing the impact of the illumination distribution upon imaging and
applying the insights gained,” in Optical Microlithography XX, Proc. of SPIE, vol. 6520,
2007.
[12] G. R. Mclntyre, “Characterizing polarized illumination in high numerical aperture optical
lithography with phase shifting masks,” University of California at Berkeley, Technical Report
No. UCB/EECS-2006-52, May 2006.
[13] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practices
and Modeling. Englewood Cliffs, NJ: Prentice-Hall Inc., 2002.
[14] Athena User’s Manual, http://www.silvaco.com, SILVACO International, July 2005.
[15] A. K. K. Wong, Resolution Enhancement Techniques in Optical Lithography. Bellingham,
Washington, USA: SPIE, 2001.
[16] H. Kirchauer, “Photolithography simulation,” PhD Dissertation, Institut fur Mikroelektronik,
1998.
[17] A. K. K.Wong, Optical Imaging in Projection Microlithography. Bellingham,Washington,
USA: SPIE, 2005.
[18] R. Schlief, A. Liebchen, and J. F. Chen, “Hopkins vs. abbe, a lithography simulation matching
study,” in Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
[19] M. D. Prouty, “Addition to the imaging capability of sample,” University of California at
Berkeley, Electronics Research Laboratory, Memorandum No. UCB/ERL M84/111, Dec.
1984.
[20] P. D. Flanner, “Two-dimensional optical imaging for photolithography simulation,” University
of California at Berkeley, Electronics Research Laboratory, Memorandum No. UCB/ERL
M86/57, July 1986.
[21] K. K. H. Toh, “Two-dimensional images with effects of lens aberrations in optical lithography,”
University of California at Berkeley, Electronics Research Laboratory, Memorandum
No. UCB/ERL M88/30, May 1988.
[22] S. Subramanian, “Rapid calculation of defocused partially coherent images,” Appl. Opt.,
vol. 20, no. 10, pp. 1854–1857, 1981.
[23] B. TollKuhn, A. Erdmann, J. Lammers, C. Nolsher, and A. Semmler, “Do we need complex
resist models for predictive simulation of lithographic process performance?” in Optical
Microlithography XXI, Proc. of SPIE, vol. 5376, 2004.
[24] D. Fuard, M. Besacier, and P. Schiavone, “Assment of different simplified resist models,” in
Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
[25] W. C. Huang, C. H. Lin, C. C. Kuo, C. C. Huang, J. F. Lin, J. H. Chen, R. G. Liu, Y. C.
Ku, and B. J. Lin, “Two threshold resist models for optical proximity correction,” in Optical
Microlithography XVII, Proc. of SPIE, vol. 5377, 2004.
[26] J. Randall, K. Ronse, T. Marschner, M. Goethals, and M. Ercken, “Variable threshold resist
models for lithography simulation,” in Optical Microlithography XII, Proc. of SPIE, vol.
3679, 1999.
[27] J.-Y. Yoo, Y.-K. Kwon, J.-T. Park, D.-S. Sohn, S.-G. Kim, Y.-S. Sohn, and H.-K. Oh, “Cd
prediction by threshold energy resist model,” in Optical Microlithography XV, Proc. of SPIE,
vol. 4691, 2002.
[28] D. Fuard, M. Besacier, and P. Schiavone, “Validity of the diffused aerial image model: an
assessment based on multiple test cases,” in Optical Microlithography XVI, Proc. of SPIE,
vol. 5040, 2003.
[29] J. Byers, M. Smith, and C. Mack, “3d lumped parameter model for lithographic simulations,”
in Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
[30] P. Yu, J. Mitra, and D. Z. Pan, “Radar: Ret-aware detailed routing using fast lithography
simulations,” in Proc. IEEE/ACM Design Automation Conf. (DAC), Anaheim, California,
USA, June 2005.