簡易檢索 / 詳目顯示

研究生: 吳明仲
Ming-Chung Wu
論文名稱: 快速估計微影製程中的特徵尺寸之空間影像模擬器
An Aerial Image Simulator for Fast Critical Dimension Estimation of Lithography Process
指導教授: 劉靖家
Jing-Jia Liou
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 微影模擬空間影像特徵尺寸
外文關鍵詞: lithography simulation, aerial image, critical dimension
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現今半導體製程不斷的快速進步,元件中的最小線寬亦愈趨縮減,使得製程中所產生的製程變異影響更鉅。在積體電路量產之前,評估電路本身的效能是非常重要的,而在現今的半導體製程中,光學微影是其中最關鍵的製程步驟。因此,透過光學微影模擬工具,我們可以很迅速的檢查出製程變動對於電路的影響,進而估測電路的效能,並且在製造電路之前改善其設計。空間影像(aerial image)模擬是微影模擬最主要的步驟,影響關鍵尺寸(Critical Dimension, CD)的重要部份。在這篇論文中,我們探討了數種不同的空間影像模型,並且把焦點放在透鏡像差(lens aberration)對關鍵尺寸所產生的影響。我們的模型是以Hopkins理論 [1] 為基礎,對於部分同調性光源(partially coherent illumination),利用透射相交係數(Transmission Cross-Coefficient, TCC)模擬整個曝光系統。我們把空間影像模擬產生出來的結果,跟U.C. Berkeley大學所提供的SPLAT軟體做比較,並且得到非常吻合的結果。接著在模擬製程中顯影(development)及蝕刻(etching)的步驟,我們利用了門檻模型以便於迅速得到關鍵尺寸。為了提升模擬器的效率,在模擬過程中,我們避免了對光學強度過低的區域作計算,對於空間密度較低的光罩圖形(layout pattern),可大大的減少模擬時間。最後,我們應用我們的模擬器,在實際電路中之數種不同的基本組成單元(cell),並且驗證我們的方法可以得到效能上的提升。


    As the feature sizes in today’s semiconductor process become smaller, process variations have
    great influences on the performance of integrated circuit (IC). Evaluating IC’s performance before
    mass production is quite important and optical lithography is the key step in modern semiconductor
    process. As a result, by optical lithography simulation, we can quickly examine the performance
    of the ICs affected by process variations and furthermore modify the design before fabrication.
    Aerial image simulation is the critical step in lithography simulation when determining the critical
    dimension (CD). We investigate various simulation models of aerial image and focus on the
    phenomenon of lens aberrations. Our model is based on Hopkins theory [1] which describes exposure
    system via transmission cross-coefficient (TCC) for partially coherent systems. We show
    the simulated aerial images agree well with the results from the simulator SPLAT [2]. A threshold
    resist model is then applied to determine the CDs. To improve the performance, our simulator is
    implemented to avoid calculations on low-intensity regions. Finally, several cell-level layouts are
    used for demonstrating out simulator.

    1 Introduction 1.1 Motivation 1.2 Optical Lithography 1.2.1 Exposure 1.2.2 Development 1.2.3 Etching 1.3 Thesis Organization 2 Imaging Background in Optical Lithography 2.1 Partially Coherent Imaging 2.2 Optical Projection System 2.3 Optical Projection System Parameters 2.3.1 Numerical Aperture 2.3.2 Partial Coherence 2.3.3 Resolution 2.3.4 Depth of Focus 2.4 Lens Aberrations 2.4.1 Optical Path Difference 2.4.2 Spherical Aberration 2.4.3 Coma 2.4.4 Astigmatism 2.4.5 Curvature 2.4.6 Distortion 3 Aerial Image Simulation 3.1 Hopkins Theory 3.1.1 1-D Algorithm 3.1.2 2-D Algorithm 3.1.3 Polygon-Based Simulation 3.2 Sum Of Coherent Systems Decomposition 4 Critical Dimension Prediction 4.1 Simplified Resist Models 4.1.1 Constant Threshold Model 5 Experimental Results 5.1 Simulation Result of Aerial Image 5.1.1 Without Aberrations 5.1.2 Smaller Feature Size with Aberrations 5.1.3 With Aberrations 5.2 Simulation Result of Critical Dimension 5.3 Simulation Result of Basic Cells 5.4 Experimental Result of Basic Cells 6 Conclusions and Future Work 68 6.1 Conclusions 6.2 Future Work

    [1] J. W. Goodman, Introduction to Fourier Optics. Englewood, Colo.: Roberts & Co, 2005.
    [2] LAVA, UC Berkrley TCAD, http://cuervo.eecs.berkeley.edu/Volcano/, University of California
    at Berkeley, 2001.
    [3] P. R. Choudhury, Handbook of microlithography, micromachining and microfabrication.
    Bellingham, Washington, USA: SPIE, 1997.
    [4] SPLAT 6.0 User’s Guide, http://cuervo.eecs.berkeley.edu/Volcano/, University of California
    at Berkeley, 2001.
    [5] Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography: automated design and
    mask requirements,” Optical Society of America, vol. 11, no. 9, Sept. 1994.
    [6] Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting structure in fast aerial image
    compuations for integrated circuit patterns,” IEEE Trans. on Semiconductor Manufacturing,
    vol. 10, no. 1, Feb. 1997.
    [7] N. Cobb, “Sum of coherent systems decomposition by svd,” University of California at
    Berkeley, Tech. Rep., Sept. 1995.
    [8] N. B. Cobb, “Fast optical and process proximity correction algorithms for integrated circuit,”
    PhD Dissertation, Dept. Electrical Engineering and Computer Science, University of California
    at Berkeley, 1998.
    [9] M. D. Smith, J. D. Byers, and C. A. Mack, “A comparison between the process windows
    calculated with full and simplified resist models,” in Optical Microlithography XV, Proc. of
    SPIE, vol. 4691, 2002.
    [10] O. K. Ersoy, Diffraction, Fourier Optics and Imaging. Hoboken, New Jersey: John Wiley
    & Sons, Inc., 2007.
    [11] S. D. Slonaker, “Visualizing the impact of the illumination distribution upon imaging and
    applying the insights gained,” in Optical Microlithography XX, Proc. of SPIE, vol. 6520,
    2007.
    [12] G. R. Mclntyre, “Characterizing polarized illumination in high numerical aperture optical
    lithography with phase shifting masks,” University of California at Berkeley, Technical Report
    No. UCB/EECS-2006-52, May 2006.
    [13] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practices
    and Modeling. Englewood Cliffs, NJ: Prentice-Hall Inc., 2002.
    [14] Athena User’s Manual, http://www.silvaco.com, SILVACO International, July 2005.
    [15] A. K. K. Wong, Resolution Enhancement Techniques in Optical Lithography. Bellingham,
    Washington, USA: SPIE, 2001.
    [16] H. Kirchauer, “Photolithography simulation,” PhD Dissertation, Institut fur Mikroelektronik,
    1998.
    [17] A. K. K.Wong, Optical Imaging in Projection Microlithography. Bellingham,Washington,
    USA: SPIE, 2005.
    [18] R. Schlief, A. Liebchen, and J. F. Chen, “Hopkins vs. abbe, a lithography simulation matching
    study,” in Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
    [19] M. D. Prouty, “Addition to the imaging capability of sample,” University of California at
    Berkeley, Electronics Research Laboratory, Memorandum No. UCB/ERL M84/111, Dec.
    1984.
    [20] P. D. Flanner, “Two-dimensional optical imaging for photolithography simulation,” University
    of California at Berkeley, Electronics Research Laboratory, Memorandum No. UCB/ERL
    M86/57, July 1986.
    [21] K. K. H. Toh, “Two-dimensional images with effects of lens aberrations in optical lithography,”
    University of California at Berkeley, Electronics Research Laboratory, Memorandum
    No. UCB/ERL M88/30, May 1988.
    [22] S. Subramanian, “Rapid calculation of defocused partially coherent images,” Appl. Opt.,
    vol. 20, no. 10, pp. 1854–1857, 1981.
    [23] B. TollKuhn, A. Erdmann, J. Lammers, C. Nolsher, and A. Semmler, “Do we need complex
    resist models for predictive simulation of lithographic process performance?” in Optical
    Microlithography XXI, Proc. of SPIE, vol. 5376, 2004.
    [24] D. Fuard, M. Besacier, and P. Schiavone, “Assment of different simplified resist models,” in
    Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
    [25] W. C. Huang, C. H. Lin, C. C. Kuo, C. C. Huang, J. F. Lin, J. H. Chen, R. G. Liu, Y. C.
    Ku, and B. J. Lin, “Two threshold resist models for optical proximity correction,” in Optical
    Microlithography XVII, Proc. of SPIE, vol. 5377, 2004.
    [26] J. Randall, K. Ronse, T. Marschner, M. Goethals, and M. Ercken, “Variable threshold resist
    models for lithography simulation,” in Optical Microlithography XII, Proc. of SPIE, vol.
    3679, 1999.
    [27] J.-Y. Yoo, Y.-K. Kwon, J.-T. Park, D.-S. Sohn, S.-G. Kim, Y.-S. Sohn, and H.-K. Oh, “Cd
    prediction by threshold energy resist model,” in Optical Microlithography XV, Proc. of SPIE,
    vol. 4691, 2002.
    [28] D. Fuard, M. Besacier, and P. Schiavone, “Validity of the diffused aerial image model: an
    assessment based on multiple test cases,” in Optical Microlithography XVI, Proc. of SPIE,
    vol. 5040, 2003.
    [29] J. Byers, M. Smith, and C. Mack, “3d lumped parameter model for lithographic simulations,”
    in Optical Microlithography XV, Proc. of SPIE, vol. 4691, 2002.
    [30] P. Yu, J. Mitra, and D. Z. Pan, “Radar: Ret-aware detailed routing using fast lithography
    simulations,” in Proc. IEEE/ACM Design Automation Conf. (DAC), Anaheim, California,
    USA, June 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE