簡易檢索 / 詳目顯示

研究生: 邱國捷
Chiu, Kuo-Chieh
論文名稱: 以電腦模擬方式探討橄欖-耳蝸反射迴路之反遮蔽效應
Exploring the unmasking effects of medial olivocochlear reflex pathway by computer simulation
指導教授: 劉奕汶
Liu, Yi-Wen
口試委員: 呂忠津
Lu, Chung-Chin
羅中泉
Lo, Chung-Chua​n
劉欽岳
Liu, Chin-Yueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 反遮蔽效應內側橄欖耳蝸中繼神經元
外文關鍵詞: unmasking effect, Medial Olivocochlear
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的在模擬聽覺的生理現象―遮蔽效應及反遮蔽效應,遮蔽效應及反遮蔽效應對人耳的幫助甚大,遮蔽效應及反遮蔽效應都可以藉由內側橄欖耳蝸中繼神經元(Medial Olivocochlear,MOC)對外毛細胞產生影響所造成,MOC有一條負迴授連接至外毛細胞,當基膜上的振幅過大使得聲音強度增強到可能損害聽力系統時,MOC會做出抑制,讓外毛細胞之電動性便因此降低,基膜的振動程度也因此變小,造成聽神經產生的動作電位次數降低,以達到保護聽力的作用,此為遮蔽效應的功能;至於反遮蔽效應則為在有噪音的環境中,當有MOC抑制的情況下,可對噪音產生較大抑制而對語音訊號產生較少抑制,因此即使在有噪音的影響下,還是能透過此機制的作用,使接收到的訊號更加清晰,這種現象稱為反遮蔽效應。模擬所利用之聽覺迴路模型以Liu and Neely (2009)(2010)所提出的中耳至內耳耳蝸模型為基礎,再連接多個聽覺生理模型,形成一聽覺迴路模型,並期望透過此模型調整模型參數來模擬經過MOC之聽覺反射對基膜上行進波的影響,以及受到MOC影響後的聽神經觸發次數的變化,以期望在聽力診斷與聽覺心理學(psychoacoustics)上有所貢獻。


    The main purpose of this thesis is to simulate human’s ear hearing physiological phenomena-the masking effect and unmasking effect. Both of these two are helpful for our ears, which are able to use the medial olivocochlear(Medial Olivocochlear, MOC) to affect outer hair cells. MOC has a negative feedback which connects to outer hearing cells. Our hearing system might be damaged when the amplitude on the Basilar Membrane is too large. Hence, the MOC will suppress it and the motility of outer hearing cells would be reduced so that the vibration of Basilar Membrane would also calm down. This results in decreasing the number of the action potentials made by our hearing nerves. In this way we are able to protect our hearing system. The mentioned above is so-called masking effect.On the other hand, as for the unmasking effect, while we are exposed to the noisy environment, we can have more suppression for the noise and the less suppression for the letters if we get the MOC. As a result, even if we are in a noisy place, we can still use this to make the letter we received much clearer, and that is unmasking effect.This researching model is based on the middle ear to the cochlea, which was referred by Liu and Neely(2009)(2010), and then it combines with a variety of models for our physiological hearing, eventually leads to a hearing pathway model.Right now we are looking forward to using this model (change some parameters if needed) to simulate the effect of Basilar Membrane by using MOC, and then we see the situation of the hearing nerves effected by MOC. Hopefully, we expect to give some devoting to the hearing diagnosis and the psychoacoustics.

    摘要 I Abstract II 致謝 III 目次 IV 圖目次 VI 第一章 緒論 9 1.1 研究動機與目的 9 1.2 研究內容 10 1.3 論文架構 10 第二章 聽覺系統簡介 11 2.1 外耳至中耳 11 2.2 耳蝸 12 2.3 聽神經與毛細胞 13 2.4 耳蝸核(Cochlear Nucleus)的功能簡介: 16 2.5 內側橄欖耳蝸-中繼神經元的功能簡介: 17 2.6 反遮蔽效應之探討 20 第三章 聽覺系統模型建構 21 3.1 周邊聽覺系統:中耳至內耳耳蝸及外毛細胞膜型—Liu and Neely Model 21 3.1.1 模型建構與說明 22 3.2 聽神經模型(一) 23 3.3 聽神經模型(二)—Meddis Model 24 3.3.1 模型建構方式 24 3.4 Summer Model 27 3.4.1 內毛細胞 27 3.5 耳蝸核與內側橄欖耳蝸中繼神經元模型(一) 29 3.6 內側橄欖耳蝸輸出至外毛細胞模型 31 第四章 結果與討論 34 4.1 RL位移變化結果 34 4.2 雜訊比分析 40 4.3 聽神經觸發次數 44 4.3.1 有噪音環境下沒有MOC中繼神經元抑制與無噪音環境下沒有MOC中繼神經元抑制下的聽神經觸發次數比較 49 4.3.2 有噪音環境下無MOC中繼神經元抑制與有噪音環境下有MOC中繼神經元的聽神經觸發次數比較 50 第五章 結論與未來展望 54 5.1 結論 54 5.2 未來展望 55 參考文獻 56

    1. 余律明."建立中耳至腦幹之聽覺生理模型並利用特定頻率延遲之tuberculoventral抑制模擬耳蝸反遮蔽效應"國立清華大學碩士研究論文(2012).
    2. Willert, V., et al. (2006). "A probabilistic model for binaural sound localization." IeeeTransactions on Systems Man and Cybernetics Part B-Cybernetics 36(5): 982-994.
    3. J. F. Stein with C. J. Stoodley. Neuroscience: an introduction, 3rd edition, Wiley & Sons, 2006.
    4. Squire, L. R. (2008). Fundamental neuroscience. Amsterdam ; Boston, Elsevier / Academic Press.
    5. Guinan, J. J., Jr. (2006). "Olivocochlearefferents: anatomy, physiology, function, and the measurement of efferent effects in humans." Ear Hear27(6): 589-607.
    6. Von Békésy , G. (1960). Experiments in hearing. New York,, McGraw-Hill.
    7. J.G.Roederer.(1995) "The physics and psychophysics of music."Springer-Verlag.
    8. Raphael, Y. and R. A. Altschuler (2003). "Structure and innervations of the cochlea. "Brain Res Bull60(5-6): 397-422.
    9. Stankovic, K., et al. (2004). "Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear." Journal of Neuroscience24(40): 8651-8661.
    10. Dallos, P. (2008). "Cochlear amplification, outer hair cells and prestin." Current Opinion in Neurobiology18(4): 370-376.
    11. Meddis, R. (1986). "Simulation of Mechanical to Neural Transduction in the Auditory Receptor." Journal of the Acoustical Society of America79(3):702-711.
    12. Moser, T., A. Brandt, et al.(2006). "Hair cell ribbon synapses. "Cell Tissue Res326(2): 347-359.
    13. Sumner, C. J., et al. (2002). "A revised model of the inner-hair cell and auditory-nerve complex." Journal of the Acoustical Society of America111(5): 2178-2188.
    14. Young, E. D. and D. Oertel (2004). Chap. 4 The cochlear nucleus. In Shepherd, G. M., The synaptic organization of the brain(pp.125-171).Oxford ; New York,Oxford University Press.
    15. A. van Schaik, E. Fragniere and E. Vittoz.(1996). "An analogue electronic modelof ventral cochlear nucleus neurons,"IEEE Int. Conf. Microelectronics for Neural Networks, pp.52-59.
    16. Guinan J.J. (2011).Chap.3 physiology of the Medial and Lateral OlivocochlearSystems.In Ryugo,D.K.,R.R.Fay,etal.Auditory and vestibular efferents(pp39-81).New York,Springer.
    17. Liu, Y. W. and S. T. Neely (2009). "Outer hair cell electromechanical properties in a nonlinear piezoelectric model." Journal of the Acoustical Society of America126(2): 751-761.
    18. Liu, Y. W. and S. T. Neely (2010). "Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells." Journal of the Acoustical Society of America127(4): 2420-2432.
    19. Shera, C. A. (2007). "Laser amplification with a twist: Traveling-wave propagation and gain functions from throughout the cochlea." Journal of the Acoustical Society of America122(5): 2738-2758.
    20. Hudspeth, A. J. (1997). "Mechanical amplification of stimuli by hair cells."Current Opinion in Neurobiology7(4): 480-486.
    21. Brownell, W. E., et al. (1985). "Evoked Mechanical Responses of Isolated Cochlear Outer Hair-Cells." Science227(4683): 194-196.
    22. Ashmore, J. F. (1987). "A Fast Motile Response in Guinea-Pig Outer Hair-Cells - the Cellular Basis of the Cochlear Amplifier." Journal of Physiology-London388: 323-347.
    23. Matthews, J. W. (1983). "Modeling reverse middle ear transmission of acoustic distortion signals, " in Mechanics of Hearing, edited by E. de Boer and M. A. Viergever Delft University Press, Delft_, pp. 11-18.
    24. Zwisolocki, J. (1962). "Analysis of the middle-ear function. Part I:Input impedance, " J. Acoust. Soc. Am. 34, 1514-1523.
    25. Santos-Sacchi, J. (1991). "Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. " J Neurosci11(10): 3096-3110.
    26. Scherer, M. P. and A. W. Gummer (2004). "Vibration pattern of the organ of Corti up to 50 kHz: evidence for resonant electromechanical force. "ProcNatlAcadSci U S A101(51): 17652-17657.
    27. Dallos, P. (1973). The auditory periphery; biophysics and physiology. New York,, Academic Press.
    28. M. B. Sachs and P. J. Abbas (1974)."Rate versus level function for auditory-nervefibers in cats:tone-burst stimuli,” J AcoustSoc Am56:1835-1847.
    29. de Boer, E. and H. R. de Jongh (1978). "On cochlear encoding: potentialities and limitations of the reverse-correlation technique."Journal of the Acoustical Society of America63(1):115-135.
    30. Carney, L. H. and T. C. Yin (1988). "Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. " JNeurophysiol60 (5):1653-1677.
    31. Shamma, S. A., R. S. Chadwick, et al. (1986). "A biophysical model of cochlear processing: intensity dependence of pure tone responses. "J AcoustSocAm80(1): 133-145.
    32. Mountain D. C., and Hubbard, A. E. (1996). "Computational analysis of hair cell and auditory nerve process, " in Auditory Computation edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay (Springer, New York).
    33. Russell, I. J., A. R. Cody, et al. (1986)." The Responses of Inner and Outer Hair-Cells in the Basal Turn of the Guinea-Pig Cochlea and in the Mouse Cochlea Grown-Invitro. "Hear Res22(1-3): 199-216.
    34. Hudspeth, A. J. and R. S. Lewis (1988). "Kinetic-Analysis of Voltage-Dependent and Ion-Dependent Conductances in Saccular Hair-Cells of the Bull-Frog, Rana-Catesbeiana. "Journal of Physiology-London 400: 237-274.
    35. Kidd, R. C., and Weiss, T. F. (1990). "Mechanism that degrade timimg information in the cochlea, " Hear. Res. 49, 181-208.
    36. Johnston, D. and S. M.-s. Wu (1995). Foundations of cellular neurophysiology. Cambridge, Mass., MIT Press.
    37. Dayan, P. and L. F. Abbott (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge, Mass., Massachusetts Institute of Technology Press.
    38. W. S. Rhode and S. Greenberg (1992). "Physiology of theCochlear Nuclei," in The Mammalian Auditory Pathway: Neurophysiology, Edited by Popper, A.N., and Fay, R.R., Springer-Verlag, New York.
    39. M. C. Brown, R. K. de Venecia, J. J. Guinan, Jr.(2003)."Responses of medial olivocochlear neurons: specifying the central pathways of the MOC reflex."Exp
    Brain Res153(4): 491-498.
    40. Guinan, J. J. and M. L. Gifford (1988). "Effects of Electrical-Stimulation of Efferent Olivocochlear Neurons on Cat Auditory-Nerve Fibers .1. Rate-Level Functions." Hearing Research33(2): 97-113.
    41. Guinan, J. J. and K. M. Stankovic (1996). "Medial efferent inhibition produces the largest equivalent attenuations at moderate to high sound levels in cat auditory-nerve fibers." Journal of the Acoustical Society of America100(3): 1680-1690.
    42. Kawase, T., et al. (1993). "Antimasking Effects of the Olivocochlear Reflex .2. Enhancement of Auditory-Nerve Response to Masked Tones." Journal of Neurophysiology70(6): 2533-2549.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE