簡易檢索 / 詳目顯示

研究生: 阿比莎士
Goyal, Abhishake
論文名稱: 使用高電子選擇比金屬背電極提升以矽奈米線為基礎的異質介面太陽能電池
Efficiency enhancement of a heterojunction solar cell based on silicon nanowire and PEDOT:PSS by an electron-selective back contact
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 丁兆民
Ding, James
朱治偉
Chu, Chih-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 83
中文關鍵詞: HIT太陽能電池c-Si太陽能電池電子選擇層硝酸銀PEDOT:PSS
外文關鍵詞: HIT solar cells, c-Si solar cells, PEDOT:PSS, Electron Selective Layer, Silicon nanostructures
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究專注於運用矽與有機材料的異質接面,以低成本的方式成倍提升太陽能電池效率。透過結合電子選擇性背電極與使用等向-非等向交互蝕刻製程,我們實現了以n型結晶矽材與p型電洞導電聚合物(PEDOT:PSS)為基礎的實驗。在此實驗中,藉由結合額外的電子選擇性氟化锂(LiF)背電極,我們達成高達14.3%的能量轉換效率(power conversion efficiency, PCE),與高濃度摻雜的非晶矽背電極相比,此氟化锂背電極額外提供了調變功函數的功效,作為一個電子傳輸層,它同時改善了電流密度與功函數,分別達到3.5 mA/cm2與3.8 eV。此外,透過反向金屬輔助化學蝕刻(reverse-etched metal-assisted chemical etching)製程,我們可以良好控制奈米結構的型態,形成與PEDOT:PSS相容的接面,將反射率維持在5%以下。總結上述,此研究為提升電流密度、接面品質與Si/PEDOT:PSS異質接面太陽能電池效率提供了一個全新的方向與見解。


    This research is based on heterojunctions of silicon and organic materials, which displayed a potential for enhancing the solar cell efficiency manifolds in a cost-effective way. Investigations based on texturized n-type crystalline silicon with the p-type hole conductive polymer, i.e., PEDOT:PSS for silicon heterojunction solar cell, were realized through the incorporation of electron-selective back contact along with the isotropic-anisotropic reverse etching process. In this work, by incorporating an additional electron-selective lithium fluoride (LiF) back contact, the power conversion efficiency (PCE) increased to 14.3%. Comparable to the heavily doped amorphous-Si back passivation layer, this LiF layer provided the functionality of modulating the work function. As an electron transporting layer, it improves the current density to 3.5 mA/cm2 and the work function from 4.3 eV (Si/Al) to 3.8 eV (LiF/Al). Additionally, based on the reverse-etched metal-assisted chemical etching (RE-MaCE) process, the nanostructured morphology can be controlled to form a coherent junction with PEDOT:PSS. The reflectance was maintained to be less than 5%. To summarize, this work provides a new insight to improve the current density, junction quality, and performance of nanostructured Si/PEDOT:PSS heterojunction solar cells.

    List of Figures vii Glossary xi CHAPTER 1 Introduction 14 1.1 Timeline 14 1.2 Solar Cell 17 1.2.1 Heterojunction Solar cell 19 1.3 Solar Cell Physics 22 1.3.1 Electrical Characterstics 22 1.3.1.1 Photogeneration of Carriers 22 1.3.1.2 Carrier Concentration 22 1.3.1.3 P-N junction 25 1.3.1.4 Related Terminoligies 27 1.3.2 Optical Characterstics 30 1.3.2.1 Light Trapping 30 1.4 Silicon Nanowires 33 1.4.1 Geometry of Silicon Nanowires 34 1.4.2 Physics of Radial Junction 35 1.4.3 Introduction of PEDOT 36 1.4.4 Review on SiNWs/PEDOT hybrid solar cell 40 CHAPTER 2 Fabrication of Silicon Nanowires 42 2.1 Mechanism of Metal Assisted Chemical Etching(MaCE) 42 2.2 Experimental Procedure 44 2.3 Morphology Study 46 CHAPTER 3 Material and Sample Characterization 51 3.1 Materials 52 3.2 Experimental 53 3.3 Device Architecture 54 3.4 Sample Characterization 55 3.4.1 Solar Simulation. 55 3.4.2 Scanning Electron Microscopy(SEM) 56 3.4.3 Atomic Force Microscopy(AFM) 56 3.4.4 UV-Vis Spectroscopy. 57 3.4.5 Contact Angle. 57 3.4.1 Photoelectron Spectroscopy. 58 CHAPTER 4 Results 59 4.1 Optimization parameters for textured Si 59 4.1 Function of Triton X-100 63 4.1 Electron Selective Contact Analysis 66 CHAPTER 5 Discussion 71 5.1 Losses 71 5.2 Contact 72 CHAPTER 6 Conclusion 75 References 77

    Shibani K. Jha, Energy.2017.03.110
    G. Conibeer, Mater. Today 2007, 10, 42.

    G. F. Brown, J. Wu, Laser Photonics Rev. 2009, 3, 394.

    A. Luque, J. Appl. Phys. 2011, 110, 031301.

    A. Kandala, T. Betti, A. Fontcuberta i Morral, Phys. status solidi 2009, 206, 173.

     G. Boyle. Renewable Energy: Power for a Sustainable Future, 2nd ed. Oxford, UK: Oxford University Press, 2004.
    J. Kodes, pssa.1771.2210050230.
    Lewis M.Fraas, Low-Cost Solar Electric Power, 2014, 10.1007/978-3-319-07530-3_1.
    Alan Chodos, APS News, 2009 Apr., Vo. 18, No. 4.
    Douglas Martin, The New York Times, 1995.
    Lamb Anthony H, US2000642 A, 1935.
    Ehsanul Kabir, rser.2017.09.094.
    Veszi Gabor Adam, US2428537 A, 1947.
    Lilienfeld Julius Edgar, US1900018 A, 1933.
    D.M. Chapin, Journal of Applied Physics, 1954, 10.1063/1.117211711.
    Dennis J. Flood, NASA Technical Memorandum 88833, 1986.
    T.V. Torchynska, Superficies Vacio, 2004, 17(3).
    Horizon Solar Cell, the-history-of-solar-power, 2015.
    Ucilia Wang, Forbes, The rise of a giant solar power plant in California’s central plain, 2013.
    Ivan Penn, California invested heavily in solar power, Los Angeles Times, 2017.
    Dave Levitan, Gallium Arsenide Solar Panel breaks efficiency record, IEEE Spectrum, 2012.
    A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 2008, 451, 163.

    E. Klampaftis, D. Ross, K. R. McIntosh, B. S. Richards, Sol. Energy Mater. Sol. Cells 2009, 93, 1182.

    F. Flory, Encycl. Opt. Eng., Taylor & Francis, 2012.

    L. Escoubas, Woodhead Publishing, 2013.

    http://www.solarstik.com/stikopedia/stiktm-u.
    Ciesielskia, Peter N; Biosource Technology 101 (9): 3047–3053, 2010, 10.1016/j.biortech.2009.12.045.
    Yehezkeli, Omer; 2012, 10.1038/ncomms1741.
    Wohlgemuth JH, 1991; 1:273-277.
    "Publications, Presentations, and News Database: Cadmium Telluride". National Renewable Energy Laboratory.
    K. Zweibel, "A Solar Grand Plan", Scientific American, 2008. CdTe PV is the cheapest example of PV technologies and prices are about 16¢/kWh with US Southwest sunlight.
    Further mention of cost competitiveness: "Solar Power Lightens Up with Thin-Film Technology", Scientific American, 2008.
    Renewable and Sustainable Energy Reviews, 2013, 10.1016/j.rser.2012.11.035.
    V. Fthenakis , Journal of Solar Energy Research, 2010, 10.1016/j.rser.2010.03.008.
    de Wild-Scholten, Solar Energy Materials & Solar Cells, 2013, 10.1016/j.solmat.2013.08.037.
    Fthenakis, Renewable and Sustainable Energy Reviews, 2004, 1016/j.rser.2003.12.001.
    Werner, Jürgen H. "Toxic Substances In Photovoltaic Modules". postfreemarket.net. Institute of Photovoltaics, University of Stuttgart, Germany - The 21st International Photovoltaic Science and Engineering Conference, 2011 Fukuoka, Japan.
    "Water Solubility of Cadmium Telluride in a Glass-to-Glass Sealed PV Module" Vitreous State Laboratory, and AMELIO Solar, Inc., 2011.
    Herman Trabish, The Lowdown on the Safety of First Solar's CdTe Thin Film, greentechmedia.com, 2012
    Robert Mullins, Cadmium: The Dark Side of Thin-Film, September 25, 2008 [17] Supply Constraints Analysis, National Renewable Energy Laboratory
    Fraunhofer ISE Photovoltaics Report, 2014, pg. 18-19.
    Vijaya Kumar Gurygubelli, Journal of Applied Physics, 2015, 118, 034503.
    http://nptel.ac.in/courses/113106062
    Andrew Blakes, Energy Procedia, 2012, 33, 1-10.
    Zhao J, Progress in Photovoltaics: Research and Applications 1999; 7:471-4.
    Cousins PJ, Proc. Photovoltaics Specialist Conf., San Diego; 2010, pp. 275 8.
    Smith DD, Proc. 38th IEEE Photovoltaic Specialists Conf. (PVSC), Austin, Texas; 2012, pp. 001594-001597.
    Green MA, Silicon Solar Cells, Advanced Principles and Practice. University of New South Wales Sydney, N.S.W. 2052, 1995, ISBN 0-7334-0994-6.
    Blakers AW, Electron Device Lett. 1984; 5:12.
    Stefaan De Wolf, Green, 2012, 10.1515/green-2011-0018.
    J. Zhao, Appl. Phys. Lett., 1991, 73 (1998).
    M. A. Green, Prog. Photovoltaics 2009, 17.
    A. I. Kingon, Nature, 2000, 406, 1032 .
    A. G. Aberle, Prog. Photovoltaics, 1997, 5, 29.
    B. E. Deal, J. Appl. Phys., 1965, 36, 3770.
    M. Taguchi, Jpn. J. Appl. Phys., 2008, 47, 814.
    W. E. Spear, Solid State Comm., 1975, 17, 1193
    W. Fuhs, AIP Conf. Proc., 1974, 20, 345
    J. I. Pankove, Appl. Phys. Lett., 1979, 34, 156
    Y. Hamakawa, Appl. Phys. Lett., 1983, 43, 644
    K. Okuda, Jpn. J. Appl. Phys., 1983, 22, L605
    H. Matsuura, J. Appl. Phys., 1984, 55, 1012 (1984).
    Wilfried G.J.H.M. van Sark, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 2010, Ch.1,2,7.
    Mishima, Solar Energy Materials and Solar Cells, 2011, 95, 18–21
    Fuhs, W., J.: Heterojunctions of amorphous silicon and silicon single crystals., AIP Conference Proceedings, 1974, vol. 20, pp. 345–350
    Chunduri, Photon International, 2010, 130–140.
    Muñoz, Proceedings of the 35th PVSC, Hawaii, 2010, pp. 39–43
    Kinoshita, T., Proc. 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011.
    Abdul-Azeez, Solid-State Electronics, 2006, 50, 9-10.
    http://www.pveducation.org/pvcdrom/quantum-efficiency.
    https://ocw.tudelft.nl/wp-content/uploads/solar_energy_section.
    Riney E. Brandt, Journal of Applied Physics, 2017, 10.1063/1.4982752.
    Mehdi Leilaeioun, Journal of Applied Physics, 2016, 10.1063/1.4962511.
    Zheng Tang, Materials Today, 2014, 10.1016/j.mattod.2014.05.008.
    Mathieu Boccard, Appl. Phys. Lett., 2012, 10.1063/1.4758295.
    Dennis M. Callahan, Nanoletters, 2012, 10.1021/nl203351k.
    Changsoon Cho, Optics Express, 2013, 10.1364/OE.21.00A276.
    Erik Garnett, Nano Letters, 2010, 10.1021/n100161z.
    http://newscenter.lbl.gov/2010/03/03/trapping-sunlight/
    Martin Foldyna, Nanotechnology, 2013, 10.1117/2.1201311.005205.
    Guobin Jia, IEEE Journal of Photovoltaics, 2013, 10.1109/JPHOTOV.2013.2289873.
    B. M. Kayes, J. Appl. Phys. 2005, 97, 114302.
    Z. Fan, Nat. Mater. 2009, 8, 648.
    J.-Y. Jung, Nanotechnology 2010, 21, 445303.
    E. C. Garnett, J. Am. Chem. Soc. 2008, 130, 9224.
    T. Mikolajick, Phys. Status Solidi Rapid Res. Lett. 2013, 7, 793–799
    N. Singh, Solid State Tech., 2008, 51, 34.
    J.-P. Colinge, Nat. Nanotechnol., 2010, 5, 225–229.
    M.T. Björk, Appl. Phys. Lett., 2008, 92, 193504.
    Srabanti Ghosh, Scientific Reports, 2015, 10.1038/srep18002.
    Hu Yan, Polymer Journal, 2009, 10.1295/polymj.PJ2009143.
    Mark Lefebvre, Chem. Mater., 1999, 10.1021/cm9804618.
    Shaune L McFarlane, Macromolecules, 2010, 10.1021/ma102257a.
    YH Nam, Nanotechnology, 2017, 10.1088/1361-6528/aa9014.
    Ryo Nagata, IEEE Active Matrix Flatpanels Displays and Devices, 2014, 10.1109/AM-FPD.2014.6867202.
    Donald McGillivray, App. Mat. & Int., 2016, 10.1021/acsami6b09704.
    Joseph Palathinkal, Journal of Mat. Chem. A, 2016, 10.1039/c6ta07410c.
    Yu-Tsu Lee, Appl. Mater. Interfaces, 2016, 10.1021/acsami.6b10741.
    Chenxu Zhang, Intr. Journal of Photoenergy, 2017, 10.1155/2017/3192197.
    Ken A. Nagamatsu, IEEE Journal of Photovoltaics, 2014, vol. 4, 1.
    Shuxin Li, Nanoresearch, 2015, 10.1007/s12274-015-0814-y.
    Chenxu Zhang, International Journal of Photoenergy, 2017, 10.1155/2017/3192197.
    Yoonseok Park, Appl. Phys. Lett., 2016, 10.1063/1.4954902.
    Zhenhai Yang, ACS Energy Lett., 2017, 10.1021/acsenergylett.7b00015.
    Sato Keisuke, Journal of Nanotechnology and Material science, 2017, 10.15436/2377-1372.17.1365.
    J. Schmidth, Energy Procedia, 2012, 10.1016/j.egypro.2012.02.004.
    Zhipeng Huang, Advanced Materials, 2011, 10.1002/adma.201001784.
    Barbara Fazio, Light, 2016, 10.1038/lsa.2016.62.

    QR CODE