研究生: |
陳彥百 Yen Pai Chen |
---|---|
論文名稱: |
酸處理二氧化鈦粉末分析及光伏性質之研究 Photovoltaic Properties and Analysis of Acid-treated Titanium Dioxides |
指導教授: |
李紫原
Chi Young Lee 裘性天 Hsin Tien Chiu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 二氧化鈦 、光伏性質 、酸處理 、表面改質 、光電化學 |
外文關鍵詞: | titanium dioxide, photovoltaic, acid treatment, surface modify, photoelectrochemistry |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
二氧化鈦在不同條件的酸處理過程下,表面狀態以及形貌產生變化。利用SEM、EDS、XRD、UV/Vis以及介達電位儀來分析經由不同酸處裡條件下得到的二氧化鈦粉末性質。並製作成太陽電池量測其光電轉換效能。
我們發現經由酸處理過後的二氧化鈦,其表面電位隨著酸處理濃度而改變,酸濃度越高,二氧化鈦粉末的表面電位也跟著提高。但酸處理並不會改變二氧化鈦的內部結構,由XRD分析也可以得知酸處理也不會改變二氧化鈦的晶粒大小。經由EDS分析可知酸處理過後也沒有異質元素的摻入。
經過酸處理之後的二氧化鈦粉末所製作成的光電池裝置,其光電轉換效率有大幅的提升。固態半導體理論支持了本實驗中的結果,表面電位的提升降低了顆粒介面的接觸能障,並提升了電子的穿隧機率;利用兩點探針量測也證實酸處理過二氧化鈦電極電阻之下降。
The surface properties and morphologies of titanium dioxide were modified by acid treatment. The titanium dioxide powders treated by various acids were examined by SEM, EDS, XRD, UV/Vis and zeta-potential meter, and were made to be electrode in solar device. The influence of acid treatment was studied in details.
We find the zeta-potential of acid-treated titanium dioxide increases with increasing of acid concentration. On the other hand, the microstructure and grain size of titanium dioxides do not be changed after acid treated. Furthermore, according to EDS analysis, no extra elements in the titanium dioxide were observed.
The photoelectron conversion efficiency of the solar devices markedly increases as the anodes were made by acid-treated titanium dioxides, owing to the reducing of the potential wall between grains and increasing of electron tunneling probability by increasing the surface charge of titanium dioxide. According to resistance measurement, the resistance of the electrode made by acid treated titanium dioxide is lower than that made by titanium dioxide without acid treatment.
第七章 參考文獻
[1] M. Grätzel, “Photo electrochemical cell” Nature, 2001, 414, 338-344
[2] M. Grätzel, “Powering the planet” Nature, 2000, 403, 363
[3] B. Oregan, M Grätzel, “A Low-cost, High-efficiency Solar-cell Bas on Dye- sensitized colloidal TiO2 Films” Nature, 1991, 353, 737-740
[4] M. Grätzel “Solar Energy Conversion by Dye-sensitized Photovoltaic cells” Inorg. Chem., 2005, 44, 6841-6851
[5] A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semicon- doctor electrode” Nature, 1972, 238, 37-38,
[6] M. A. Fox, M. Y. Dulay, “Heterogeneous Photocatalysis” Chem. Rev., 1993, 93, 341-357
[7] A. L. Linsebigler, G. Lu, J. T. Yates, “Photocatalysis on TiO2 surfaces : Principles, Mechanisms, and Selected Results” Chem. Rev., 1995, 95, 735-758
[8] M. R. Hoffmann, S. T. Martin, W. Choi et al., “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev., 1995, 95, 69-96
[9] P. Serp, P. Kalck, R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials” Chem. Rev., 2002, 102, 3085-3128
[10] K. I. Iuchi, Y. Ohko, T. Tatsuma, A. Fjjishima, “Cathode-Separated TiO2 Photocatalysis Applicable to a Photochromic Device Responsive to Back- side Illumination” Chem. Mater., 2004, 16, 1165-1167,
[11] A. Fujishima, T. N. Rao, D. A. Tryk, “Titanium dioxide Photocatalysis” J. of Photochem. and Photobio. C : Photochem. Rev., 2000, 1, 1-21
[12] F. Hurd, R. Livingston, “The quantum yields of some dye-sensitized photo- oxidations” J. Phys. Chem., 1940, 44, 865-873,
[13] G. Oster, J. S. Bellin, R. W. Kimball, M. E. Schrader, “Dye-sensitized photooxidation” J. Am. Chem. Soc., 1959, 81, 5095-5099
[14] S. Chaberek, A. Shepp, R. Jl Allen, “Dye-sensitized Photopolymerization Processes.Ⅰ.” J. Phys. Chem., 1965, 69, 641-647
[15] S. Chaberek, A. Shepp, R. Jl Allen, “Dye-sensitized Photopolymerization Processes.Ⅱ.” J. Phys. Chem., 1965, 69,647-656
[16] S. Chaberek, A. Shepp, R. Jl Allen, “Dye-sensitized Photopolymerization Processes.Ⅲ.” J. Phys. Chem., 1965, 69, 2834-2841
[17] S. Chaberek, A. Shepp, R. Jl Allen, “Dye-sensitized Photopolymerization Processes.Ⅳ.” J. Phys. Chem., 1965, 69, 2842-2848,
[18] Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions.Ⅰ” J. Am. Chem. Soc., 1967, 89, 5455-5456
[19] Kearns et al., “Evidence for the participation of 1.SIGMA.g+ and 1.DELTA.g oxygen in dye-sensitized photooxygenation reactions.Ⅱ” J. Am. Chem. Soc., 1967, 89, 5456-5457
[20] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature, 1976, 261, 402
[21] N.-G. Park, J. van de Lagemaat, and A. J. Frank. “Comparison of Dye-Sensitized Rutile and Anatase-Based TiO2 Solar Cells” J. Phys. Chem. B, 2000, 104, 8989-8994
[22] S. Ito, S. M. Zakeeruddin, R. Humphry-Barker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Mium, S. Uchida, and M. Grätzel, “High efficiency organic dye sensitized solar cells controlled by nanacrystalline TiO2 electrode thickness” Adv. Mater., 2006, 18, 1202- 1205
[23] A. Kongkanand, R. M. Dominguez, and P. V. kamat “single wall carbon nanotube scaffolds for photoelectrochemical solar cells.capture and transport of photogenerated electrons” Nano Lett., 2007, 7, 676-680
[24] J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, ”Dye-Sensitized Anodic TiO2 Nanotubes” Electrochem. Commun., 2005, 7, 1133-1137
[25] Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, “Dye-sensitized TiO2 nanotube solar cells : fabrication and electric characterization” Phys. Chem. Chem. Phys., 2005, 7, 4157-4163,
[26] K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced Charge- Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays” Nano Lett., 2007, 7, 69-74
[27] J,-H. Yoon, S.-R. Jang, R. Vittal, J. Lee, K.-J. Kim, “TiO2 nanorods as additive to TiO2 film to improvement in the performance of dye-sensitized solar cells” J. Photochem. Photobiol. A:Chem., 2006, 180, 184-188
[28] M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda and G. Nelles “Low-temperature fabrication of dye-sensitized solar cells bye transfer of composite porous layers” Nature, 2005, 4, 607-611
[29] T. Ma, M. Akiyama, E. Abe, I. Imai, “High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-Doped Nanostructured Titania Electrode” Nano Lett., 2005, 5, 2543-2547
[30] T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. -Baker, P. Comte, P. Péchy, and M. Grätzel “Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes” J. Electrochem. Soc., 2006, 153, A2255-A2261
[31] T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, N. Tanabe, “FTO/ ITO double-layered transparent conductive oxide for dye-sensitized solar cells” J. Photochem. and Photobiol. A: Chem., 2004, 164, 199–202
[32] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeer- uddin, P. Pe´chy, M. K. Nazeeruddin. M. Grätzel, “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline TiO2 photoanode” Chem. Commun., 2006, 38, 4004– 4006
[33] M. K. Nazeeruddin, A. Kay, L. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-XzBis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (Ⅱ) Charge Trans- fer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes” J. Am. Chem. Soc., 1993, 115, 6382- 6390
[34] A. Hagfeldt and M. Grätzel, “Molecular Photovoltaics” Acc. Chem. Res., 2000, 33, 269-277
[35] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies” Nature, 1998, 395, 583-585
[36] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, “New application of electrospun TiO2 electrode to Solid-state dye-sensitized solar cells” Synthetic Metals, 2005, 153, 77-80
[37] T. Taguchi, X.-T. Zhang, I. Sutanto, K.-I. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragamic, A. Fujishima, “Improving the per- formance of solid-state dye-sensitized solar cell using MgO coated TiO2 nanoporous film” Chem. Commun., 2003, 19, 2480–2481
[38] L. S-. Mende, J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin, M. Gra1tzel, “Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-State Dye-Sensitized Photovoltaics” Nano Lett., 2005, 5, 1315-1320
[39] E. L-. Beltran, P. Prené, C. Boscher, P. Belleville, P. Buvat, C. Sanchez, “All-Solid-State Dye-Sensitized Nanoporous TiO2 Hybrid Solar Cells with High Energy-Conversion Efficiency” Adv. Mater., 2006, 18, 2579–2582
[40] Michael Grätzel, “Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight” Chemistry Letters, 2005, 34, 8-13
[41] G. K. Mor, O. K. Varghese, M. Paulose. N. Mukherjee, C. A. Grimes, “Fabrication of tapered, conical-shaped titania nanotubes” J. Mater. Res., 2003, 18, 2588-2593
[42] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki “Smooth Anodic TiO2 Nanotubes” Angew. Chem. Int. Ed., 2005, 44, 7463– 7465
[43] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 □m in Length” J. Phys. Chem. B, 2006, 110, 16179-16184
[44] Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity” J. Electrochem. Soc., 2006, 153, D123- D127
[45] J. H. Park, S. Kim, and A. J. Bard “Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting” Nano Lett., 2006, 6, 24-28
[46] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of Highly Ordered TiO2 nanotube Arrays in Dye-sensitized solar cells” Nano Lett., 2006, 6, 215-216
[47] B. G. Streetman, S. Banerjee, “Solid state electronic devices 5th” Baker & Taylor Books, 1999-11-08