研究生: |
蔡昀展 Tsai, Yun-Chan |
---|---|
論文名稱: |
似噪音與鎖模脈衝以光整流機制產生兆赫輻射之比較研究 A comparative study of Terahertz signal generation by optical rectification using mode-locked and noise-like pulses. |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
楊承山
Yang, Chan-Shan 李晁逵 Lee, Chao-Kuei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 兆赫茲輻射 、鎖模脈衝 、似噪音脈衝 、光整流效應 |
外文關鍵詞: | terahertz radiation, mode-locked pulse, noise-like pulse, optical rectification |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用非線性光學理論以及龍格-庫塔法模擬分析碲化鋅晶體中光整流效應產生兆赫茲的過程。為理論分析,二階非線性效應是通過使用慢變包絡近似的波動方程。在類似的光學參數條件下入射鎖模脈衝和似噪音脈衝,比較兩者對厚度25微米碲化鋅中產生兆赫輻射訊號的差異。脈衝能量為微焦耳等級下產生的兆赫茲頻譜,在5.3~6.9兆赫茲處有強兆赫茲吸收,且似噪音脈衝產生者會比用鎖模脈衝的寬約2-4個兆赫,頻譜最高可接近50兆赫茲,能量則略低於鎖模脈衝產生者,約在10-13焦耳等級。不過,鎖模脈衝產生之兆赫茲訊號的能量可至10-12焦耳等級。
In this paper, we use nonlinear optics and Runge-Kutta method to simulate and analyze the process of generating terahertz radiation by the optical rectification effect in zinc telluride crystals by mode-locked pulse (MLP) and noise-like pulse (NLP). For theoretical analysis, the second-order nonlinear effect is considered. Further, the slowly varying envelope approximation is assumed to be valid. Comparing the terahertz spectrum generated by MLP and NLP with pulse energy at microjoule level in a zinc telluride capital. The noise-like pulse THz generator will be about 2 to 4 THz wider than that by the mode-locked pulse. Strong THz absorption at 5.3 to 6.9 THz is predicted, as expected from the phonon resonance. The spectrum can be as broad as 50 THz. THz pulse energy generated by NLP is slightly lower than that by the mode-locked pulse generator, at the level of 10-13 Joule level. About an order of magnitude lower.
[1] J. Uddin, Terahertz Spectroscopy: A Cutting Edge Technology. BoD–Books on Demand, 2017.
[2] C. Fattinger and D. Grischkowsky, "Terahertz beams," Applied Physics Letters, vol. 54, no. 6, pp. 490-492, 1989.
[3] P. R. Smith, D. H. Auston, and M. C. Nuss, "Subpicosecond photoconducting dipole antennas," IEEE Journal of Quantum Electronics, vol. 24, no. 2, pp. 255-260, 1988.
[4] M. Van Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Optics letters, vol. 14, no. 20, pp. 1128-1130, 1989.
[5] H.-J. Song and T. Nagatsuma, "Present and future of terahertz communications," IEEE transactions on terahertz science and technology, vol. 1, no. 1, pp. 256-263, 2011.
[6] Y.-C. Hong, C.-H. Lin, H.-H. Wu, and C.-L. Pan, "Simulation of terahertz spectrum generated by noise-like pulse," in 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2019: IEEE, pp. 1-2.
[7] S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, "Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser," Optics Express, vol. 22, no. 1, pp. 1058-1064, 2014.
[8] S. Keren and M. Horowitz, "Interrogation of fiber gratings by use of low-coherence spectral interferometry of noiselike pulses," Optics letters, vol. 26, no. 6, pp. 328-330, 2001.
[9] M. Putnam, M. Dennis, I. Duling, C. Askins, and E. Friebele, "Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation," Optics letters, vol. 23, no. 2, pp. 138-140, 1998.
[10] V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, "Measuring temperature profiles in high-power optical fiber components," Applied optics, vol. 42, no. 13, pp. 2284-2288, 2003.
[11] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics express, vol. 21, no. 13, pp. 16056-16062, 2013.
[12] K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, "83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining," Optics express, vol. 19, no. 18, pp. 17647-17652, 2011.
[13] A. Schiff-Kearn, "Experimental and Numerical Investigations into Terahertz Time-Domain Spectroscopy," Université d'Ottawa/University of Ottawa, 2019.
[14] S. Cabuk, "The nonlinear optical susceptibility and electro-optic tensor of ferroelectrics: first-principle study," Central European Journal of Physics, vol. 10, no. 1, pp. 239-252, 2012.
[15] Y. Huang et al., "Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy," ACS applied materials & interfaces, vol. 9, no. 5, pp. 4956-4965, 2017.
[16] N. Vagelatos, D. Wehe, and J. King, "Phonon dispersion and phonon densities of states for ZnS and ZnTe," The Journal of Chemical Physics, vol. 60, no. 9, pp. 3613-3618, 1974.
[17] G. Gallot, J. Zhang, R. McGowan, T.-I. Jeon, and D. Grischkowsky, "Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation," Applied Physics Letters, vol. 74, no. 23, pp. 3450-3452, 1999.
[18] C.-M. Tu, J.-C. Chen, and C.-C. Chi, "Study of THz Pulse Generation due to Coherent Phonon-Polariton Effect in [110] ZnTe Crystal."
[19] P. Han and X.-C. Zhang, "Coherent, broadband midinfrared terahertz beam sensors," Applied physics letters, vol. 73, no. 21, pp. 3049-3051, 1998.
[20] A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling," Applied physics letters, vol. 69, no. 16, pp. 2321-2323, 1996.
[21] S. Smirnov and S. Kobtsev, "Modelling of noise-like pulses generated in fibre lasers," in Real-time Measurements, Rogue Events, and Emerging Applications, 2016, vol. 9732: International Society for Optics and Photonics, p. 97320S.
[22] T. Hattori and K. Takeuchi, "Simulation study on cascaded terahertz pulse generation in electro-optic crystals," Optics express, vol. 15, no. 13, pp. 8076-8093, 2007.
[23] J. R. Cash and A. H. Karp, "A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides," ACM Transactions on Mathematical Software (TOMS), vol. 16, no. 3, pp. 201-222, 1990.
[24] S. Vidal, J. Degert, M. Tondusson, E. Freysz, and J. Oberlé, "Optimized terahertz generation via optical rectification in ZnTe crystals," JOSA B, vol. 31, no. 1, pp. 149-153, 2014.