研究生: |
楊宏德 Yang, Hung Te |
---|---|
論文名稱: |
封裝效應於SOI電容式三軸微機電加速度計之探討 Research on Packaging Effects of Three-axis SOI MEMS Accelerometer |
指導教授: |
江國寧
Chiang, Kuo Ning |
口試委員: |
蔡明義
Tsai, Ming Yi 趙儒民 Chao, Ru Min |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 封裝效應 、微機電系統 、加速度計 、共振頻率 、殘餘應力 、模態分析 、製程模擬 、有限單元應用及模擬 |
外文關鍵詞: | Package effect, SOI MEMS, Accelerometer, Resonant frequency, Residual stress, Modal analysis, Process modeling, FEM Applications and simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾十年來手持裝置與微機電系統元件快速的發展,在微小化、低成本、低功耗和高精度的要求上,封裝後之微機電元件的可靠性已被提出了許多挑戰,如封裝效應產生之殘餘應力和翹曲行為等。因感測元件在製造後之共振頻率與各組織結構的勁度等性質具有不確定性,將導致其輸出性能產生不穩定性,故本研究將探討感測元件受殘餘應力影響下,其共振頻率之變化趨勢。接著將對於SOI電容式三軸微機電加速度計封裝於閘型陣列封裝之結構,進行塑封材料之固化降溫製程模擬,探討因材料間之熱膨脹係數的不同產生之封裝效應,使得感測元件因殘餘應力而產生輸出偏移之現象及其影響度。
於本研究中,利用平行板電容公式及振盪頻率原理提出一個修正電容偏差之模型,此修正模型可透過量測電容式加速度計之變化共振頻率,即可將偏移之電容差值補償至標準電容差值。由結果顯示,加速度計受到較大殘餘應力結構影響時,其引起的電容偏移量較大,加速度計之靈敏度亦明顯下降。本研究利用修正電容偏差模型,將產生偏差之電容偏移量補償至標準電容偏差量,且成功地將偏移量補償至標準量。另外,為了研究電容式加速度計之封裝溫度效應,將建立三維閘型陣列封裝模型,並嵌入電容式加速度計,並模擬環境溫度由0至300⁰C。結果發現,受溫度效應影響而產生之偏移量比受殘餘應力效應影響而產生之偏移量來得小,因此加速度計之殘餘應力效應是影響靈敏度偏移的關鍵因素之一。
In the recent years, the rapid development of handheld devices which have become smaller, cheaper, and more functionalities. However, the MEMS accelerometer after packaging has presented many challenges such as residual stress and warpage. After the sensor device processing, there were many process uncertainties may cause changes in the resonance frequency and stiffness. These uncertainties can cause the performance of MEMS sensor unstable. Furthermore, the MEMS accelerometer sensor will be embedded in the LGA packaging and simulate the shrinkage of molding compound after molding. More details of packaging effect in device will be discussed in this research.
In this research, the resonance frequency of the three-axis SOI accelerometer is successfully simulated by modal analysis, and also presents a simple compensation model for trimming the offset of capacitance differentiation using the measured resonance frequency. From the result, the accelerometer structural under high residual stress can cause the offset of capacitance differentiation. Furthermore, the sensitivities of the accelerometer are dropped significantly. By using the compensation model, the capacitance differentiation offset and the sensitivity are successfully trimmed. In addition, in order to investigate the packaging temperature effect on accelerometer structural (0-300⁰C), the LGA packaging 3D model was established. The results found that the sensitivity offsets of temperature effects are smaller than the offsets of residual stress effects, the residual stress effects will be a key factor affecting the sensitivity offsets.
[1] Q. Hongwei, F. Deyou, and X. Huikai, “A single-crystal silicon 3-axis CMOS-MEMS accelerometer,” Sensors Proceedings of IEEE, Vol. 2, pp. 661-664, 2004.
[2] H. J. Wang, H. A.Deng, S. Y. Chiang, and K. N. Chiang, “Thin film residual stress assessment of capacitive mems microphones using process modelingtechnology,” InterPACK Portland, Oregon, USA, Jul 6-8, 2011.
[3] I. Lee, G. H. Yoon, J. Park, S. Seok, K. Chun, and K. I. Lee, “Development and analysis of the vertical capacitive accelerometer,” Sensors and Actuators A: Physical, Vol. 119, pp. 8-18, 2005.
[4] N. Maluf, An Introduction to Microelectromechanical System Engineering, Artech House, 2000.
[5] S. D. Senturia, Microsystem Design, Kluwer Academic Publisher, 2001.
[6] S. Fatikow, and U. Rembold, Microsystem Technology and Microrobotics, Springer, 1997.
[7] C. Liu, Foundations of MEMS, Pearson Education India, 2010.
[8] J. Hammond, A. McNeil, R. August, and D. Koury, “Inertial transducer design for manufacturability and performance at Motorola,” 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, June 8-12, 2003.
[9] C. Tse, “Design of a power scalable capacitive mems accelerometer front end,” Department of electrical and computer engineering, University of toronto, 2013.
[10] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and fabrication of a differential capacitive three-axis soi accelerometer using vertical comb electrodes,” IEEJ Transactions on electrical and electronic engineering, Vol. 4, pp. 345-351, 2009.
[11] M. Andrejašicˇ, “MEMS accelerometers,” Department of physics, University of ljubljana, March 2008.
[12] T. Tsuchiya, and H. Funabashi, “A Z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Maastricht, The Netherlands Jan. 25-29, 2004.
[13] S. Dutta, Shaveta, M. Imran, R. Pal, and R. K. Bhan, “Diffusion induced residual stress in comb-type microaccelerometer structure,” Journal of Materials Science: Materials in Electronics, Vol. 25, pp. 3828-3832, Sept. 2014.
[14] Z. Xin, P. Seungbae, and M. W. Judy, “Accurate assessment of packaging stress effects on mems sensors by measurement and sensor-package interaction simulations,” Journal of Microelectromechanical Systems, Vol. 16, pp. 639-649, 2007.
[15] L. Yong, L. Yumin, Y. Zhongfa, T. Chen, L. Keunhyuk, and S. Belani, “Warpage analysis and improvement for a power module,” Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, May 28-31, 2013.
[16] T. L. Chou, C. H. Chu, H. N. Chiang, and K. N. Chiang, “Residual stress and thermal effect of mems pressure sensor,” Electronic Monthly, Vol. 168, pp. 150-167, July 2009.
[17] M. Tachimon, “SIMOX Wafers (Silicon wafers with a thin superficial silicon film separated from the body by implanted oxygen),” Nippon steel technical report, Vol. 73, pp. 19-25, April 1997.
[18] J. E. Vandemeer, G. Li, and A. C. McNeil, “Analysis of thermal hysteresis on micromachined accelerometers,” Sensors Proceedings of IEEE, Vol. 2, pp. 1235-1238, 2003.
[19] K. Ramkumar, and A. N. Saxena, “Stress in si02 films deposited by plasma and ozone tetraethylorthosilicate chemical vapor deposition processes ” Journal of The Electrochemical Society, Vol. 139, pp. 1437-1442, 1992.
[20] K. S. Chen, X. Zhang, and S. Y. Lin, “Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling,” Thin Solid Films, Vol. 434, pp. 190-202, 2003.
[21] N. Belov, and N. Khe, “Using deep RIE for micromachining SOI wafers,” In proceeding of 52 nd Electronic Components and Technology Conference, Milpita, CA, USA, May 31-31, 2002.
[22] X. Zhang, T. Y. Tee, and J. E. Luan, “Comprehensive warpage analysis of stacked die mems package in accelerometer application,” International Conference on Electronic Packaging Technology, Shenzhen, China, Sept. 2-2, 2005.
[23] L. J. Segerlind, Applied finite element analysis, New York: Wiley, 1976.
[24] L. E. Felton, N. Hablutzel, W. A. Webster, and K. P. Harney, “Chip scale packaging of a MEMS accelerometer,” In proceeding of 54 th Electronic Components and Technology Conference, Cambridge,MA,USA, June 1-4, 2004.
[25] ANSYS User's Mannual: ANSYS Inc. Company.
[26] M. A. Crisfield, Non-linear finite element analysis od solids and structures, New York: Wiley, 1991.
[27] W. T. Thomson, Theory of vibration with applications: Prentice hall, 1993.
[28] 江國寧, 微電子系統封裝基礎理論與應用技術: 滄海書局, 2006.
[29] S.S.Walwadkar, and J. Cho, “Evaluation of die stress in mems packaging: experimental and theoretical approaches,” IEEE Transactions on Components and Packaging Technologies, Vol. 29, pp. 735-742, 2006.
[30] W. Songsheng, T. Jieying, and S. Jing, “FEM study on the effects of flip chip packaging induced stress on MEMS,” International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, Aug 10-13, 2009.
[31] T. L. Chou, S. Y. Yang, and K. N. Chiang, “Overview and applicability of residual stress estimation of film-substrate structure,” Thin Solid Films, Vol. 519, Issue 22, pp.7883-7894 ,Sept. 2011.
[32] H. J. Wang, H. A. Deng, S. Y. Chiang, Y. F. Su, and K. N. Chiang, "Development of a feasible simulation methodology for residual stress assessment of multilayer thin film structure," ThinFilms 2014, Chongqing, China, Jul. 15-18, 2014.
[33] H. H. Chang, L. L. Liao and K. N. Chiang, " External stress effect to electromigration on thermal annealed and residual stress controlled aluminum strip," ICEP2012, Tokyo, Japan, April 17-21, 2012.