簡易檢索 / 詳目顯示

研究生: 陳式堃
Chen, Shi Kun
論文名稱: 銦鎵摻雜非晶態氧化鋅薄膜電晶體在雙閘極結構下之電性量測及自發熱劣化現象探討與研究
Investigation of Electrical Properties for Dual-gate Amorphous InGaZnO4 Thin Film Transistors and Degradation Mechanism under Self-heating Stress
指導教授: 黃惠良
張鼎張
口試委員: 黃惠良
連振炘
張鼎張
戴亞翔
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 94
中文關鍵詞: 銦鎵摻雜非晶態氧化鋅薄膜電晶體雙閘極結構自發熱劣化觸控面板
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著液晶顯示器的尺寸逐漸增大,用來使液晶旋轉的薄膜電晶體所需要的電子遷移率也越來越高。傳統非晶矽薄膜電晶體其電子遷移率太低(<1cm2/Vs),因此擁有高電子遷移率(10~100 cm2/Vs)的非晶態金屬氧化物薄膜電晶體(AOSs TFTs)對於應用在未來的顯示器上是非常有潛力的。故銦鎵摻雜非晶態氧化鋅(α-InGaZnO4)薄膜電晶體是我們所研究的重點。
    雖然非晶態金屬氧化物薄膜電晶體具有非常高的電子遷移率,但卻常常受到長時間偏壓操作、照光及焦耳熱之影響,進而產生臨界電壓(Threshold voltage)的偏移和次臨界擺幅(Subthreshold swing)的劣化現象,使元件特性面臨一個不穩定狀態。實驗分成兩部分探討a-IGZO薄膜電晶體之電性特性。
    第一部分探討為了使a-IGZO薄膜電晶體擁有更大的電流去驅動主動式有機發光元件(AM-OLEDs),因此引入雙閘極(Dual-gate)之結構。我們也探討a-IGZO雙閘極薄膜電晶體在不同閘極操作下之電性分析。從實驗結果得到的非對稱電性是因上下閘極控制區域不同所造成的。藉由電容量測及模擬軟體去驗證其控制區域不同所造成之非對稱電性。此外,雙閘極元件在照光下,不同閘極操作下具有不同的光敏感度。經由調整其操作模式,可將雙閘極元件應用在觸控式面板之光感測器(Photo-sensor)上,進而去除黑色矩陣(Black matrix)使製程成本降低。
    第二部份探討a-IGZO薄膜電晶體之自發熱(Self-heating)劣化現象。大部分的薄膜電晶體是製作於玻璃基板或是塑膠基板上,且主動層a-IGZO包覆於二氧化矽薄膜層中。由於這些材料的熱傳導係數皆很低,造成薄膜電晶體的散熱效果很差。當在閘極和汲極施加偏壓操作時,汲極電流所產生的焦耳熱(Joule heating)及閘極正偏壓作用之下會有臨界電壓的偏移及介面缺陷產生之現象。在這部份我們探討元件在不同通道寬度、通道長度和汲極偏壓條件下之薄膜電晶體自發熱劣化現象。另外,我們比較閘極偏壓應力(Gate bias stress)和自發熱應力(Self heating stress)之升溫實驗並證明自發熱現象產生的焦耳熱會使得載子捕獲的現象更明顯,使得臨界電壓偏移及次臨界擺幅劣化會比閘極偏壓應力操作之下來的嚴重。最後,我們做了一組具有相同有效應力時間(Effective stress time)之直流閘極偏壓應力與交流閘極偏壓應力(AC gate bias stress)實驗,可得知焦耳熱之累積時間對於自發熱劣化現象是一關鍵因素。


    Chinese Abstract..........................................................................................................I English Abstract........................................................................................................III Acknowledgement…………………………………………………………………...V Contents......................................................................................................................VI Figure Captions.......................................................................................................VIII Chapter 1 Introduction 1.1 Overview of Amorphous Oxide Semiconductors…………………..……1 1.2 Origin of High Electron Mobility for AOSs…………………………..…3 1.3 The Promising Material of Amorphous Oxide Semiconductors…….....5 1.4 Why Choosing a-IGZO?.............................................................................7 Chapter 2 Motivation 2.1 Dual-gate Structure...................................................................................13 2.2 Touch Screen Panel (TSP) ........................................................................15 2.3 Electrical Instability...................................................................................16 2.4 Illumination Instability..............................................................................19 2.5 Self-heating Degradation...........................................................................21 Chapter 3 Fabrication and Characterization 3.1 Fabrication Process of a-IGZO TFTs.......................................................27 3.2 Instruments and Measurement Setup......................................................28 3.2.1 Instruments.........................................................................................28 3.2.2 Set up instruments for I-V and C-V measurement..........................29 3.3 Electrical Characteristics..........................................................................29 3.3.1 The I-V transfer characteristics........................................................29 3.3.2 The C-V transfer characteristics.......................................................31 3.4 Methods of Device Parameter Extraction...............................................32 3.4.1 Determination of Threshold Voltage (Vth)........................................32 3.4.2 Determination of Subthreshold Swing S.S. .....................................32 3.4.3 Determination of Field-Effect Mobility (μFE) ..................................33 Chapter 4 Investigation of Electrical Properties for Dual-gate a-IGZO TFTs 4.1 Introduction................................................................................................39 4.2 Experiment.................................................................................................40 4.3 Asymmetrical Electrical Performance of Dual-gate a-IGZO TFTs…..40 4.3.1 Comparison of a-IGZO TFTs under single/dual gate operation…40 4.3.2 I-V properties of TFTs under bottom gate operation with top gate bias.......................................................................................................41 4.3.3 C-V properties of TFTs under bottom gate operation with top gate bias.......................................................................................................43 4.3.4 ISE-TCAD simulation of the Dual-gate TFTs…………………….44 4.3.5 I-V properties of TFTs under top gate operation with bottom gate bias.......................................................................................................47 4.4 Investigation of Light Induced Instability for Dual-gate a-IGZO TFTs and the Application of Dual-gate TFTs to Photo Sensors……….…….49 4.4.1 Investigation of light induced instability for Dual-gate a-IGZO TFTs under bottom/top gate operation…………………………….49 4.4.2 Investigation of NBIS induced degradation for Dual-gate a-IGZO TFTs under bottom/top gate operation……………………….……51 4.4.3 The application of Dual-gate TFTs to photo sensors…….…….….52 4.5 Summary…………………………………………………………………55 Chapter 5 Investigation of Degradation Mechanism for a-IGZO TFTs under Self-heating Stress 5.1 Introduction................................................................................................67 5.2 Experiment.................................................................................................68 5.3 Investigating of Self-heating Degradation Behaviors with Different Devices Dimension and Drain Bias……………………………………...69 5.3.1 Degradation behaviors for a-IGZO TFTs with different width….69 5.3.2 Degradation behaviors for a-IGZO TFTs with different length…71 5.3.3 Degradation behaviors for a-IGZO TFTs with different drain bias...72 5.4 Investigating of Charge Trapping Behavior Enhanced under Self-heating Stress………………………………..……............................73 5.5 Investigating of Degradation Mechanism for a-IGZO TFTs under AC Self-heating Stress……………………………...………...………………77 5.6 Summary………………………………………………………………….78 Chapter 6 Conclusion……………………………...……………………………89 Reference……………………………...……………………………………………..91

    [1-1] Mitsuru Nakata, Kazushige Takechi, Kazufumi Azuma, Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko “Improvement of InGaZnO4 Thin Film Transistors Characteristics Utilizing Excimer Laser Annealing” Appl. Phys. Express Vol.2, (2009) 021102 .
    [1-2] Mitsuru Nakata, Kazushige Takechi, Toshimasa Eguchi, Eisuke Tokumitsu, Hirotaka Yamaguchi, and Setsuo Kaneko “Flexible High-Performance Amorphous InGaZnO4 Thin-Film Transistors Utilizing Excimer Laser Annealing” Jpn. J. Appl. Phys. Vol.48, (2009) 081607 .
    [1-3] Toshio Kamiya and Hideo Hosono. “Material characteristics and applications of transparent amorphous oxide semiconductors” NPG ASIA MATERIAL, Vol.2, 15-22, 2010
    [1-4] Hideo Hosono, Naoto Kikuchi, Naoyuki Ueda b, and Hiroshi Kawazoe “ Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples” J. Non-Cryst. Solids 198–200, 165–169 (1996)
    [1-5] Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano and Hideo Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, Vol. 432, 488, 2004
    [2-1] H. C. Tuan, M. J. Thompson, N. M. Johnson, R. A. Lujan. “Dual- Gate a- Si:H Thin Film Transistors,” IEEE Electron Device Letters, Vol.3, No.12, pp.357-359, 1982
    [2-2] Peyman Servati, Karim S. Karim, and Arokia Nathan. “Static Characteristics of a-Si:H Dual-Gate TFTs” IEEE Electron Device Letters, Vol.50, No.4, APRIL 2003
    [2-3] J. S. Park, K. S. Son, T. S. Kim, J. S. Jung, K. H. Lee, W. J. Maeng, H. S. Kim, E. S. Kim, K. B. Park, J. B. Seon, J. Y. Kwon, M. K. Ryu, and S. Lee. “High Performance and Stability of Double-Gate Hf-In-Zn-O Thin-Film Transistors Under Illumination” IEEE Electron Device Letters, Vol.31, No.9, SEP 2010
    [2-4] Y. Kamada, S. Fujita, M. Kimura, T. Hiramatsu, T. Matsuda, M. Furuta, and T. Hirao. “Reduction of Photo-Leakage Current in ZnO Thin-Film Transistors With Dual-Gate Structure” ” IEEE Electron Device Letters, Vol.32, No.4, APRIL 2011
    [2-5] K. S. Son, J. S. Jung, K. H. Lee, T. S. Kim, J. S. Park, K. C. Park, J. Y. Kwon, B. Koo, and S. Y. Lee. “Highly Stable Double-Gate Ga–In–Zn–O Thin-Film Transistor” IEEE Electron Device Letters, Vol.31, No.8, AUGUST 2010
    [2-6] Mark-Jan Spijkman , Kris Myny , Edsger C. P. Smits , Paul Heremans , Paul W. M. Blom ,and Dago M. de Leeuw, “Dual-Gate Thin-Film Transistors, Integrated Circuitsand Sensors”, Advanced Materials, ,Vol. 23, 3231–3242 (2011)
    [2-7] Hsiao-Wen Zan, Wei-Tsung Chen, Chung-Cheng Yeh, Hsiu-Wen Hsueh, Chuang-Chuang Tsai, and Hsin-Fei Meng. “Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement”, Applied Physics Letters, Vol. 94, 133502, 2009
    [2-8] Young Min Park and Alberto Salleo, ”Dual-gate organic thin film transistors as chemical sensors”, Applied Physics Letters, Vol. 95, 133307, 2009
    [2-9] Willem den Boer, Adi Abileah, Pat Green and Terrance Larsson. “Active Matrix LCD with Integrated Optical Touch Screen”, SID 03 DIGEST ,1494~1497
    [2-10] M.J.Powell, C.van Berkel, I. D. French, and D. H. Nicholls. “Bias dependence of instability mechanisms in amorphous silicon thin film transistors”, Applied Physics Letters, Vol. 51, 1242, 1987
    [2-11] M. J. Powell, C. van Berkel, and J. R. Hughes. “Time and temperature dependence of instability mechanisms in amorphous silicon thin film transistors”, Applied Physics Letters, Vol. 54, 1323, 1989.
    [2-12] F. R. Libsch and J. Kanicki. “Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors”, Applied Physics Letters, Vol. 62, 1286, 1993
    [2-13] Karim S. Karim, Arokia Nathan, Michael Hack, and William I. Milne. “Drain-Bias Dependence of Threshold Voltage Stability of Amorphous Silicon TFTs”, IEEE Electron Device Letters, VOL. 25, NO. 4, 188, 2004
    [2-14] Chia-Sheng Lin, Ying-Chung Chen, Ting-Chang Chang, Hung-Wei Li, Shih-Ching Chen, Fu-Yen Jian, Te-Chih Chen, and Ya-Hsiang Tai. “Transient Effect Assisted NBTI Degradation in p-Channel LTPS TFTs under Dynamic Stress”, Journal of The Electrochemical Society, Vol. 158, H10-H14, 2011
    [2-15] R. B. M. Cross and M. M. De Souza. “Investigating the stability of zinc oxide thin film transistors”, Applied Physics Letters, Vol. 89, 263513, 2006
    [2-16] P. Görrn, P. H, T. Riedl, and W. Kowalsky. “Stability of transparent zinc tin oxide transistors under bias stress”, Applied Physics Letters, Vol. 90, 063502, 2007
    [2-17] J. M. Lee, I. Tak. Cho, J. H. Lee, and H. I. Kwon. “Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors” , Applied Physics Letters, Vol. 93, 093504, 2008
    [2-18] A. Suresh and J. F. Muth. “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors”, Applied Physics Letters, Vol. 92, 033502,2008
    [2-19] Kenji Nomura,Toshio Kamiya,Hiroshi Yanagi,Eiji Ikenaga,Ke Yang,Keisuke Kobayashi,Masahiro Hirano, and Hideo Hosono. “Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O,observedby bulk sensitive x-ray photoelectron spectroscopy”, Applied Physics Letters,Vol. 92, 202117,2008
    [2-20] S. Kim, S. Kim, C. J. Kim, J. Park, I. Song, S. Jeon, S. E. Ahn, J. S. Park and J. K. Jeong. “The influence of visible light on the gate bias instability of In–Ga–Zn–O thin film transistors”, Solid-State Electronics, Vol.62, 77–81 2011
    [2-21] Md Delwar Hossain Chowdhury, Piero Migliorato, and Jin Jang. “Light induced instabilities in amorphous indium–gallium–zinc–oxidethin-film transistors”, Applied Physics Letters, Vol. 97, 173506, 2010
    [2-22] Shahnewaz Mondal, and A. K. Raychaudhuri. “Observation of a large gate-controlled persistent photoconductionin single crystal ZnO at room temperature”, Applied Physics Letters, Vol. 98, 023501, 2011
    [2-23] Kazushige Takechi, Mitsuru Nakata, Toshimasa Eguchi, Hirotaka Yamaguchi,and Setsuo Kaneko. “Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4Thin-Film Transistors”, Japanese Journal of Applied Physics, Vol. 48, 010203, 2009
    [2-24] K. H. Lee, J. S. Jung, K. S. Son, J. S. Park and T. S. Kim. “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors”,Applied Physics Letters, Vol. 95, 232106, 2009
    [2-25] N D Young, A Gill and M J Edwards. “Hot carrier degradation in low temperature processed polycrystalline I silicon thin film transistors”, Semicand. Sci. Technol, Vol.7 1183-1188, 1992
    [2-26] Satoshi INOUE, Hiroyuki OHSHIMA and Tatsuya SHIMODA. “Analysis of Degradation Phenomenon Caused by Self-Heating in Low Temperature Processed Polycrystalline Silicon Thin Film Transistors”, Japanese Journal of Applied Physic, Vol. 41 pp. 6313–6319, 2002
    [2-27] T. Fuyukia, K. Kitajimaa, H. Yanoa, T. Hatayamaa, Y. Uraokaa,S. Hashimotob and Y. Moritab, “Thermal degradation of low temperature poly-Si TFT”, Thin Solid Films, Vol.487 216 – 220, 2005
    [2-28] S. HASHIMOTO, Y. URAOKA, Takashi F. and Y. MORITA, “Analysis of Thermal Distribution in Low Temperature Polycrystalline Silicon p-Channel Thin Film Transistors”, Japanese Journal of Applied Physic,Vol.45 pp.7-12, 2006
    [2-29] Ya-Hsiang Tai, Shih Che Huang, and Hao Lin Chiu, “Degradation of Capacitance-Voltage Characteristics Induced by Self-Heating Effect in Poly-Si TFTs” ,Electrochemical and Solid-State Letters, 9 (6), G208-G210 ,2006
    [2-30] M. FUJII, H. YANO, T. HATAYAMA, Y. URAOKA, T. FUYUKI, J. S. JUNG, and J. Y. KWON “Thermal Analysis of Degradation in Ga2O3–In2O3–ZnO Thin-Film Transistors”, Japanese Journal of Applied Physic, Vol. 47, No. 8, 2008, pp. 6236–6240
    [2-31] M. FUJII, Y. URAOKA, T. FUYUKI, J. S. JUNG, and J. Y. KWON. “Experimental and Theoretical Analysis of Degradation in Ga2O3–In2O3–ZnO Thin-Film Transistors” Japanese Journal of Applied Physic,Vol.48,04C091,2009
    [2-32] Devin A. Mourey, Dalong A. Zhao1, Ho Him R. Fok, Yuanyuan V. Li, and Thomas N. Jackson, “Thermal Effects in Oxide TFTs”, Device Research Conference (DRC) , 243-244, 2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE