簡易檢索 / 詳目顯示

研究生: 顏佑昌
Yen, Yu-Chang
論文名稱: 使用聚對二甲苯熱接合技術製作之空氣填充式神經探針
An Air-filled Type Neural Probe Fabricated by Parylene Thermal Bonding Technique
指導教授: 張兗君
Chang, Yen-Chung
方維倫
Fang, Weileun
口試委員: 鄭裕庭
張兗君
方維倫
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 神經探針熱接合電極聚對二甲苯高分子
外文關鍵詞: neural probe, electrode, parylene, thermal bonding
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著神經電生理學的發展,具有小體積且帶有高電極密度的神經探針開始成為研究上重要的工具。隨神經探針發展,雖然神經探針尺度縮小、電極密度增加,造成的傷口也變小,但絕大部分的探針仍採用相對於組織較硬的材料,如:矽、玻璃等,仍容易產生撕裂傷,後來的研究雖有利用高分子材料讓探針軟化,但高分子探針容易在穿刺的時候偏離目標,讓操作精度下降。後期提出探針硬化的技術,卻又並不完全與半導體製程相容,甚至會造成操作上的困難。故本篇論文提出使用聚對二甲苯(Parylene)熱接合的技術,製作出空氣填充式的軟性聚對二甲苯探針,冀能解決前述神經探針之缺點,並為未來活體的長期量測提供良好的解決方法。


    第 1 章 序論 13 1.1 前言 13 1.2 文獻回顧 14 1.2.1 傳統探針 14 1.2.2 矽基材探針 16 1.2.3 高分子探針 18 1.2.4 探針生物相容性 20 1.3 研究動機與目標 21 第 2 章 空氣填充式探針設計 29 2.1設計概念 29 2.2材料選擇 30 2.3 探針尺寸設計 31 2.4 腔體及充氣系統設計 32 第 3 章 聚對二甲苯的熱接合製程 41 3.1 材料與方法 42 3.1.1 試片製作 42 3.1.2 熱接合製程 43 3.1.3 接合強度測試 44 3.2 製程結果與討論 45 3.2.1 熱接合製程結果 46 3.2.2 熱接合強度測試結果 47 第 4 章 空氣填充式探針之製作 55 4.1 製程流程 55 4.2 氧電漿蝕刻遮罩之選擇 56 4.3元件封裝 57 4.4 元件製作結果 60 第 5 章 空氣填充式探針之測試 69 5.1 探針植入強度測試 69 5.1.1 測試方法 69 5.1.2 測試結果與討論 70 5.2探針強度調變測試 71 5.2.1 測試方法與模擬 72 5.2.2 測試結果與討論 74 第 6 章 結論與未來展望 83 6.1 結論 83 6.2 未來工作 84 第 7 章 參考文獻 87

    1. J. Moss, T. Ryder, T.Z. Aziz et al. “Electron microscopy of tissue adherent to explanted electrodes in dystonia and Parkinson’s disease,” Brain, 127, pp 2755–2763, 2004.
    2. M.E. Renato and Sabbatini, “Neurons and synapses: the history of its discovery,” Brain & Mind Magazine, 17, April-July 2003.
    3. K.D. Wise, J.B. Angell, A. Starr, “An integrated-circuit approach to extracellular microelectrodes,” IEEE Transactions on Biomedical Engineering, BME-17, pp 238-247, 1970.
    4. K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi, “Wireless implantable microsystems: high-density electronic interfaces to the nervous system,” Proceedings of the IEEE, 92, pp 76-97, 2004.
    5. T. Stieglitz and J.U. Meyer, “Microtechnical interfaces to neurons,” Microsystem Technology in Chemistry and Life Sciences, 194, pp 131-162, 1998.
    6. J. Ji, K. Najafi, and K.D. Wise, “A scaled electronically-configurable multichannel recording array,” Sensors and Actuators A: Physical, 22, pp 589-591. 1990.
    7. S.J. Tanghe and K.D. Wise, “A 16-channel CMOS neural stimulating array,” IEEE Journal of Solid-State Circuits, 27, pp 1819-1825, 1992.
    8. J. Ji, K. Najafi, and K.D Wise, “A low-noise demultiplexing system for active multichannel microelectrode arrays,” IEEE Transactions on Biomedical Engineering, 38, pp 75-81, 1991.
    9. J. Ji and K.D. Wise, “An implantable CMOS circuit interface for multiplexed microelectrode recording arrays,” IEEE Journal of Solid-State Circuits, 27, pp 433-443. 1992.
    10. C.H. Kim and K.D. Wise, “A 64-site multishank CMOS low-profile neural stimulating probe,” IEEE Journal of Solid-State Circuits, 31, pp 1230-1238, 1996.
    11. C.H. Kim and K.D. Wise, “Low-voltage electronics for the stimulation of biological neural networks using fully complementary BiCMOS circuits,” IEEE Journal of Solid-State Circuits, 32, pp 1483-1490, 1997.
    12. R.H. Olsson, D.L. Buhl, A.M. Sirota, G. Buzsaki, and K.D. Wise, “Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE Transactions on Biomedical Engineering, 52, pp 1303-1311 , 2005.
    13. Q. Bai, K.D. Wise, and D.J. Anderson, “A high-yield microassembly structure for three-dimensional microelectrode arrays,” IEEE Transactions on Biomedical Engineering, 47, pp 281-289, 2000.
    14. Q. Bai and K.D. Wise, “Single-unit neural recording with active microelectrode arrays,” IEEE Transactions on Biomedical Engineering, 48, pp 911-920, 2001.
    15. Y. Yao, M.N. Gulari, S. Ghimire, J. F. Hetke, and K.D. Wise, “A low-profile three-dimensional silicon/parylene stimulating electrode array for neural prosthesis applications,” IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China. 2005.
    16. K.C. Cheung, K. Djupsund, Y. Dan, and L.P. Lee, “Implantable multichannel electrode array based on SOI technology,” Journal of Microelectromechanical Systems, 12,pp 79-184, 2003.
    17. K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, and K. Najafi, “Wireless implantable microsystems: high-density electronic interfaces to the nervous system,” Proceedings of IEEE, 92, pp 76-97, 2004.
    18. S.J. Tanghe, K. Najafi, and K.D. Wise, “A planar iro multichannel stimulating electrode for use in neural prostheses,” Sensors and actuators. B, Chemical, 1, pp 464-467, 1990.
    19. K. Najafi, J. Ji, and K.D. Wise, “Scaling limitations of silicon multichannel recording probes,” IEEE Transactions on Biomedical Engineering, 37 , pp 1-11, 1990.
    20. K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson, and S.L. Bement, “Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity,” IEEE Transactions on Biomedical Engineering , 35, pp 719-732, 1988.
    21. A.C. Hoogerwerf and K.D. Wise, “A 3-Dimensional microelectrode array for chronic neural recording,” IEEE Transactions on Biomedical Engineering, 41, pp 1136-1146, 1994.
    22. D.J. Anderson, K. Najafi, S.J. Tanghe, D.A. Evans, K.L. Levy, and J.F. Hetke, “Batch-fabricated thin-film electrodes for stimulation of the central auditory-system,” IEEE Transactions on Biomedical Engineering, 36, pp 693-704, 1989.
    23. J.K. Chen and K.D. Wise, “A silicon probe with integrated microheaters for thermal marking and monitoring of neural tissue,” IEEE Transactions on Biomedical Engineering, 44, pp 770-774, 1997.
    24. J.F. Hetke, J.L. Lund, K. Najafi, K.D. Wise, and D.J. Anderson, “Silicon ribbon cables for chronically implantable microelectrode arrays,” IEEE Transactions on Biomedical Engineering, 41, pp 314-321, 1994.
    25. R.A.Normann, E.M. Maynard, P.J. Rousche, and D.J. Warren, “A neural interface for a cortical vision prosthesis,” Vision Research, 39, pp 2577-2587, 1999.
    26. K.E. Jones, P.K. Campbell, and R.A. Normann, “A glass silicon composite intracortical electrode array,” Annals of Biomedical Engineering, 20, pp 423-437, 1992.
    27. P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch and R.A. Normann, “A silicon-based, 3-Dimensional neural interface - manufacturing processes for an intracortical electrode array,” IEEE Transactions on Biomedical Engineering, 38, 758-768, 1991.
    28. R.C. Kelly, M.A. Smith, J.M. Samonds, A. Kohn, A.B. Bonds, and J.A. Movshon, “Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex,” Journal of Neuroscience, 27, pp 261-264, 2007.
    29. C. T. Nordhausen, P.J. Rousche, and R. A. Normann, “Chronic recordings of visually evoked responses using the utah intracortical electrode array,” IEEE Engineering in Medicine and Biology Society, pp 1391-1392, 1993.
    30. P.J. Rousche and R.A. Normann, “Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex,” Journal of Neuroscience Methods, 82, pp 1-15, 1998.
    31. P.J. Rousche and R.A. Normann, “Chronic intracortical microstimulation of cat auditory cortex using a 100 penetrating electrode array,” Journal of Physic, London, 499P, 1997, pp 87-88.
    32. S. Suner, M.R. Fellows, C. Vargas-Irwin, G.K. Nakata, and J.P. Donoghue, “Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, pp 524-541, 2005.
    33. S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth ,P. Tathireddy , M. Toepper, H. Oppermann , and F. Solzbacher, “Integrated wireless neural interface based on the Utah electrode array,” Biomedical Microdevices, 11, pp 453–466, 2009.
    34. H.Y. Chu, T.Y. Kuo, B. Chang, S.W. Lu, C.C. Chiao, and W. Fang, , “Design and fabrication of novel three dimensional multi-electrode array using SOI wafer,” Sensors and Actuators A: Physical, 130, pp 254-261, 2006.
    35. K.C. Cheung, K. Djupsund, Y. Dan, and L.P. Lee, “Implantable multichannel electrode array based on SOI technology,” Journal of Microelectromechanical Systems, 12, pp 179 – 184, 2003.
    36. C.W. Lin, Y.T. Lee, C.W. Chang, W.L. Hsu, Y.C. Chang, and W. Fang, “Novel glass microprobe arrays for neural recording, Biosensors and Bioelectronics, 25, pp 475-481, 2009.
    37. Y.T. Lee, C.W. Lin, C.M. Lin, S.R. Yeh, Y.C. Chang, and W. Fang, ”A pseudo 3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly,” Journal of Micromechanics and Microengineering, 20, pp 25014-25022, 2010.
    38. A. Altuna, G. Gabriel, L.M. de la Prida, M. Tijero, A. Guimer´a, J. Berganzo, R. Salido, R. Villa and L.J. Fern´andez, “SU-8-based microneedles for in vitro neural applications,” Journal of Micromechanics and Microengineering, 20, pp 64014-64019, 2010.
    39. K.C. Cheunga, Ph. Renaud, H. Tanila, and K. Djupsund, “Flexible polyimide microelectrode array for in vivo recordings and current source density analysis,” Biosensors and Bioelectronics, 22, pp 1783–1790, 2007.
    40. S. Metz, A. Bertsch, D. Bertrand, and Ph. Renaud, “Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity,” Biosensors and Bioelectronics, 19 , pp 1309–1318, 2004.
    41. S. Takeuchi, T. Suzuki, K. Mabuchi, and H. Fujita, “3D flexible multichannel neural probe array,” Journal of Micromechanics and Microengineering, 14, pp 104–107, 2004.
    42. T. Suzuki, N. Kotake, K. Mabuchi, and S. Takeuchi, “Bundled microfluidic channels for nerve regeneration electrodes,” Proceedings of IEEE, Hawaii, May, 2007.
    43. S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, Parylene flexible neural probes integrated with microfluidic channels. Lab on a Chip, 5, pp 519–523, 2005.
    44. A. Hess, J. Dunning, J. Harris, J.R. Capadona, K. Shanmuganathan, S.J. Rowan, C. Weder, D.J. Tyler, and C.A. Zorman, “A bio-inspired, chemo-responsive polymer nanocomposite for mechanically dynamic microsystems,” Transducers, Denver, 2009.
    45. Y. Lu and C.J. Kim ,Micro-finger articulation by pneumatic parylene balloons,” Transducers, Boston, 2003.
    46. H.S. Noh, Y. Choi, C.F. Wu, P.J. Hesketh, and M.G. Allen, “Parylene micromolding, a rapid and low-cost fabrication method for parylene microchannel,” Sensors and Actuators B, 102, pp 78-85 ,2004.
    47. H.S. Noh, K.S. Moon, A. Cannon, P.J. Hesketh, and C.P. Wong, “Wafer bonding using microwave heating of parylene intermediate layers,” Journal of Micromechanics and Microengineering, 14, pp 625-631, 2004.
    48. H.S. Kim and K. Najafi, “Characterization of low-temperature wafer bonding using thin-film parylene,” Journal of Microelectromechanical Systems, 14, pp 1347-1355, 2005.
    49. D. Ziegler, T. Suzuki, and S. Takeuchi, “Fabrication of flexible neural probes with built-In microfluidic channels by thermal bonding of parylene,” Journal of Microelectromechanical Systems, 15, pp 1477-1482, 2006.
    50. K.R. Williams, “Etch Rates for Micromachining Processing- Part II,” Journal of Microelectromechanical Systems, 12, pp 761-778 ,2003.
    51. Y. Zhong, X. Yu, R. Gilbert, and R.V. Bellamkonda, “Stabilizing electrode-host interfaces: A tissue engineering approach,” Journal of Rehabilitation Research and Development, 38, pp 627–632, 2001.
    52. http://www.science-products.com/Products/CatalogG/RMI-Electrodes/RMIconcentric.html
    53. K. Frank and M. C. Becker, “Microelectrodes for recording and
    stimulation,” Physical Techniques in Biological Research, W. L.
    Nastuk, Ed. New York: Academic, 5 , 1964
    54. J.R.M. Delgado, “Electrodes for extracellular recording and stimulation,” Physical Techniques in Biological Research, W. L. Nastuk, Ed. New York: Academic, 5, 1964.
    55. D.A. Robinson, “The electrical properties of metal microelectrodes,” Proceedings of IEEE, 56, pp 1065–1071, 1968.
    56. D.P. O'Brien', T.R. Nichols, and M.G. Allen, “Flexible microelectrode arrays with integrated insertion devices,” MEMS, 2001.
    57. M. Hajj-Hassan, V.P. Chodavarapu, and S. Musallam, “Microfabrication of ultra-long reinforced silicon neural electrodes,” Micro & Nano Letters, 4, pp 53–58, 2009.
    58. C.H. Chen, S.C. Chuang, H.C. Su, W.L. Hsu, T.R. Yew, Y.C. Chang, S.R. Yeh, and D.J. Yao, “A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation, “ Lab on a Chip, 11, pp1647-1655, 2011.
    59. S.J. Oh, J.K. Song, and S.J. Kim, “Neural interface with a silicon neural probe in the advancement of microtechnology”, Biotechnology and Bioprocess engineering, 8, pp 252-256, 2003.
    60. E. Peeters, B. Puers, W. Sansen, J. Gybels and P. de Sutter, “A two-wire, digital output multichannel microprobe for recording single-unit neural activity,” Sensors and Actuators B: Chemical
    4, pp 217-223, 1991.
    61. JE Shigley and CR Mischke, Mechanical Engineering Design, Fifth Edition. McGraw-Hill, New York,1989.
    62. H.T. Hsu, W.S. Su, C.C. Lee, H.Y. Huang, H.Y. Lin, W. Fang, “3D integration of micro optical components onflexible transparent substrate with through-hole-vias,” MEMs, Hong Kong, Jan , pp 536 – 539, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE