研究生: |
錢文彬 Chien, Wen-Pin |
---|---|
論文名稱: |
應用於認知無線電系統之節能合作式頻譜偵測器之設計與實作 Design and Implementation of an Energy-Saving Cooperative Spectrum Sensing Processor for Cognitive Radio |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 146 |
中文關鍵詞: | 認知無線電 、頻譜偵測 、能量偵測 、節能 |
外文關鍵詞: | cognitive radio, spectrum sensing, energy detector, energy saving |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis presents the design and implementation of a spectrum sensing processor for the cognitive radio system. In the cognitive radio system, one cognitive user (secondary user) has a limited capability of detecting the licensed primary user because of the hidden terminal problem; therefore, cooperation of the cognitive users is required to improve the spectrum sensing performance. Nevertheless, the cognitive users do not transmit data or voice all the time, and the idle cognitive users may consume massive spectrum sensing energy instead of communication energy. Therefore, we propose a partial FFT spectrum sensing method to reduce the cooperative spectrum sensing energy. Moreover, we present two techniques, called detection result prediction (DRP) and decision result modification (DRM), to increase the detection accuracy based on the frequency-domain correlation and detection diversity. The simulation results of partial spectrum sensing with AND-rule DRP and MAJ-rule DRM show that the detection performance is improved. In addition, the AND-rule DRP and MAJ-rule DRM have low complexity compared to the arithmetic operations in FFT. We design an energy-saving spectrum sensing processor with AND-rule DRP and MAJ-rule DRM. The partial cached-FFT algorithm is proposed for the control of cached-memory FFT architecture. Based on partial cached-FFT algorithm, the cached-FFT processor is proposed to reduce the computation complexity. The timing schedule for the cached-FFT processor is proposed to reduce the idle time and computation time of partial FFT calculation. The experimental results show that the proposed techniques and architecture can not only reduce spectrum sensing energy consumption to 64% of conventional method but also improve the detection performance.
本篇論文設計並實作了一個應用於認知無線電系統之合作式節能頻譜偵測電路。在合作式偵測的認知無線電系統中,某些認知使用者(idle user)並不是想要去使用主要使用者的頻帶,但是為了整體的偵測準確度,這些認知使用者也必須參與合作式頻譜偵測,在這種情況下,這些認知使用者雖然在待機狀態也必須消耗能量去做頻譜偵測,因此會對這些認知使用者造成能量消耗的問題,而且對這些認知使用者產生不公平的情形,因為他們所消耗的頻譜偵測能量並不是為了他們自己想要傳輸資料,而是為了其他認知使用者去做頻譜偵測。為了減少idle user的頻譜偵測能量消耗,本論文設計並實作了一個省電的頻譜偵測方法,利用部分頻譜偵測來達到減少快速傅立葉轉換中的運算量。另外我們還設計了具有低複雜度的「偵測結果AND規則預測法」(AND-rule Detection Result Prediction, AND-rule DRP) 和「偵測結果多數決修改法」(MAJ-rule Decision Result Modification, MAJ-rule DRM),藉由偵測效果在頻譜上的高度相關性來改善偵測效果。本篇論文使用快取式快速傅立葉轉換(Cached FFT)的架構來實作頻譜偵測電路,快取式快速傅立葉轉換演算法可以有規律地減少不需要的運算量,我們改良了部分快速傅立葉轉換演算法的位置存取表,可以移除不必要的運算量,藉此達到減少運算量的效果。除此之外,本篇論文所設計的運算流程可以達到減少運算時間的效果,因此可以達到減少偵測頻譜能量消耗的目的。經由模擬結果與實驗數據可發現,當 idle user使用部分頻譜偵測搭配AND-rule DRP和MAJ-rule DRM的能量消耗為傳統方法的64%,並且可以比原本的方法達到更好的偵測效果。相信此一研究將可以大幅提升認知無線電系統應用到現今傳統的無線通訊系統中的可行性。
[1] FCC, “Spectrum policy task force,” Tech. Rep. ET Docket no. 02-135, Nov. 2002.
[2] R. Chiang, G. Rowe, and K. Sowerby, “A quantitative analysis of spectral occupancy measurements for cognitive radio,” Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pp. 3016–3020, April 2007.
[3] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp. 201–220, Feb. 2005.
[4] D. Cabric, S. Mishra, and R. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on, vol. 1, pp. 772–776 Vol.1, Nov. 2004.
[5] B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 124–130, Nov. 2005.
[6] H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pp. 151–159, Nov. 2005.
[7] G. Atia, E. Ermis, and V. Saligrama, “Robust energy efficient cooperative spectrum sensing in cognitive radios,” Statistical Signal Processing, 2007. SSP ’07. IEEE/SP 14th Workshop on, pp. 502–506, Aug. 2007.
[8] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” Information Theory, IEEE Transactions on, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
[9] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio, part I: Two user networks,” Wireless Communications, IEEE Transactions on, vol. 6, no. 6, pp. 2204–2213, June 2007.
[10] ——, “Cooperative spectrum sensing in cognitive radio, part II: Multiuser networks,” Wireless Communications, IEEE Transactions on, vol. 6, no. 6, pp. 2214–2222, June 2007.
[11] S. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” Communications, 2006. ICC ’06. IEEE International Conference on, vol. 4, pp. 1658–1663, June 2006.
[12] C. Sun, W. Zhang, and K. Letaief, “Cooperative spectrum sensing for cognitive radios under bandwidth constraints,” Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, pp. 1–5, March 2007.
[13] C. Sun, W. Zhang, and K. Ben, “Cluster-based cooperative spectrum sensing in cognitive radio systems,” Communications, 2007. ICC ’07. IEEE International Conference on, pp. 2511–2515, June 2007.
[14] E. Peh and Y.-C. Liang, “Optimization for cooperative sensing in cognitive radio networks,” Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, pp. 27–32, March 2007.
[15] N. Neihart, S. Roy, and D. Allstot, “A parallel, multi-resolution sensing technique for multiple antenna cognitive radios,” Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 2530–2533, May 2007.
[16] N. Kundargi and A. Tewfik, “Sequential pilot sensing of ATSC signals in IEEE 802.22 cognitive radio networks,” Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pp. 2789–2792, 31 2008-April 4 2008.
[17] C. Liu, Y. Zeng, and S. Attallah, “Max-to-mean ratio detection for cognitive radio,” Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE, pp. 1959–1963, May 2008.
[18] Q. Zhang, A. Kokkeler, and G. Smit, “An efficient FFT for OFDM based cognitive radio on a reconfigurable architecture,” Communications, 2007. ICC ’07. IEEE International Conference on, pp. 6522–6526, June 2007.
[19] K. Nishi, S. Yoshizawa, and Y. Miyanaga, “A study of dynamic reconfigurable FFT processor for OFDMbased cognitive radio,” Communications and Information Technologies, 2007. ISCIT ’07. International Symposium on, pp. 1507–1510, Oct. 2007.
[20] R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, “An efficient implementation of NC-OFDM transceivers for cognitive radios,” Cognitive Radio Oriented Wireless Networks and Communications, 2006. 1st International Conference on, pp. 1–5, June 2006.
[21] J. G. Proakis, Digital communications, 4th ed. McGraw-Hill, 2001.
[22] Radio transmission and reception, 3rd Generation Partnership Project (3GPP) Std. TS 45.005 Version 5.3.0, Apr. 2002. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/45005.htm
[23] G. L. Stuber, Principles of Mobile Communication, 2nd ed. SPRINGER VERLAG, 2001.
[24] B. Baas, “A generalized cached-FFT algorithm,” in Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International Conference on, vol. 5, March 2005, pp. v/89–v/92 Vol. 5.
[25] C.-M. Chen and Y.-H. Huang, “Partial cached-FFT algorithm for OFDMA communications,” in TENCON 2007 - 2007 IEEE Region 10 Conference, 30 2007-Nov. 2 2007, pp. 1–4.
[26] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the complex fourier series,” Mathematics of Computation, vol. 19, pp. 297–301, April 1965.
[27] B. Baas, “A low-power, high-performance, 1024-point FFT processor,” Solid-State Circuits, IEEE Journal of, vol. 34, no. 3, pp. 380–387, Mar 1999.
[28] C.-M. Chen, “Channel-aware low-power FFT processor for 3GPP-LTE OFDMA transmission,” Master’s thesis, National Tsing Hua University, Taipei, Taiwan, 2008.