簡易檢索 / 詳目顯示

研究生: 陳宗漢
論文名稱: 奈米碳管之有機金屬催化製成研究
Carbon nanotubes growth by organic metal catalyst process
指導教授: 張士欽
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 58
中文關鍵詞: 奈米碳管場發射
外文關鍵詞: carbon nanotube, field emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以有機金屬溶液(有機鐵和有機鎳),旋鍍於矽基板上作為成長奈米碳管的催化劑來源,以微波加熱的系統來達到快速升溫的效果。研究中改變不同參數來研究前處理對催化劑表面型態的影響,各種不同成長參數對於成長碳管的外觀和性質的影響。成長的碳管膜以掃瞄式電子顯微鏡觀察其表面狀態,穿透式電子顯微鏡作結構分析,拉曼光譜分析奈米碳管的結晶性,並以二極方式量測其場發射性質。
    有機鐵膜經氫氣(10%)或是氨氣的高溫還原後,成為尺寸大小為40-130奈米的顆粒,再通入甲烷氣體後可以成功的成長奈米碳管。將有機鐵溶液混和光組液後,經旋鍍、曝光、顯影後,可以將奈米碳管擇區成長。有機鎳膜則可以不經過高溫還原的過程而直接成長奈米碳管,央有機鎳膜在甲烷和氮氣的混和氣體中升溫到900度,有機鎳膜會自行裂解而成鎳顆粒,奈米碳管可藉由金屬鎳的催化成長,經過20分鐘的成長,碳管膜會由原先向上成長的一層轉變為上下都成長的兩層膜,藉由電子顯微鏡的觀察,提出一套合適的成長機制。
    碳管的密度和管徑大小也可以藉由控制有機溶液的濃度來達成,而且有機金屬溶液可以旋鍍在不同材質的基板上,奈米碳管膜成長於鈦薄膜上,其場發射起始電場為1.5 V/μm,電流密度可達1 mA。


    Fe and Ni organic solutions were used as the catalyst source for growing carbon nanotubes. The effect of concentrations of the organic solution and the composition of the gases used in pretreatment on the resulted carbon nanotubes were studied. The carbon nanotubes were examined by electron microscopy and characterized by their field emission properties and Raman spectra.
    Carbon nanotubes can grow on iron particles formed by reduction in 10% hydrogen-nitrogen or ammonia gas. By mixing the organic iron solution with photo-resist materials in a standard lithographic patterning process, the patterned organic iron film can be formed which has been used to grow carbon nanotubes successfully.
    Organic nickel films can be more easily reduced than organic iron films to form small metal particles. Carbon nanotubes were even grown successfully on the organic nickel film without pre-reduction by heating with 700 W microwave in 550 torr 300 sccm 1:1 mixture of methane for 20 minutes. The lowest concentration film (0.1M) gave the best result of small diameter (30 nm) carbon nanotubes with less carbon soot.
    The carbon nanotubes can grow not only upward but also downward to the Si substrate which pushed the layer of carbon nanotubes up from the substrate. A mechanism of the forming of carbon nanotubes is proposed to explain this observation.
    Carbon nanotubes can grow successfully on titanium coated Si substrate. The carbon nanotubes grown on Ti thin film can be turned-on at an electric field as low as 1.5 V/μm due to the better electric conductivity of titanium.

    Abstract i Contents iii I. Introduction 1 II. Literature review 3 II-1 The synthesis of carbon nanotubes 3 II-2 Catalyst for growth of carbon nanotubes 4 II-3 Catalyst formed from solutions 5 II-4 The models of carbon nanotube growth 6 II-5 Field emission from carbon nanotubes 7 III. Experimental procedures 10 IV. Results and discussions 15 IV-1 Organic iron catalyst 15 IV-2 Organic nickel catalyst 16 IV-3 The comparison between organic iron and nickel 19 IV-4 Field emission measurement and Raman spectroscopy 20 V. Figures of Results and discussions 24 VI. Conclusions 51 VII. Reference 53

    [1] S. Iijima, Nature 354 (1991) 56, “Helical microtubules of graphitic carbon”
    [2] B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76
    (1996) 2511, “Nanomechanics of carbon tubes: instabilities beyond linear response”
    [3] A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269 (1995) 1550, “Unraveling nanotubes: field emission from an atomic wire”
    [4] T. W. Ebbesen and P. M. Ajayan, Nature 358 (1992) 220, “Large scale synthesis of carbon nanotubes”
    [5] S. Iijima, and T. Ichihashi, Nature 363 (1993) 603, “Single-shell carbon nanotubes of 1-nm diameter”
    [6] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) 605. “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”
    [7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robalt, X. Chunhui, L. Y. Hee, K. S. Gon, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273 (1996) 483, “Crystalline ropes of metallic carbon nanotubes”
    [8] A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. R. Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J .E. Fischer, A. M. Rao, P. C. Eklund, and R. E Smalley, Appl. Phys. A, 67 (1998) 29, “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization”
    [9] H. J. Jeong, Y. M. Shin, S. Y. Jeong, Y. C. Choi, Y. S. Park, S. C. Lim, G. S. Park, I. T. Han, J. M. Kim, and Y. H. Lee, Chem. Vapor Deposition, 8 (2002) 11, “Anomalies in the growth temperature and time dependence of carbon nanotube growth”
    [10] C. J. Lee, D. W. Kim, and T. J. Lee, Appl. Phys. Lett. 75 (1999) 1721, “Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal vapor deposition”
    [11] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou and G. Wang, Chem. Phys. Lett. 299 (1999) 97, “Direct growth of aligned open carbon nanotubes by chemical vapor deposition”
    [12] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, Appl. Phys. Lett. 72 (1998) 3437, “Growing carbon nanotubes by microwave plasma enhanced chemical vapor deposition”
    [13] Christian Klinke, Jean-Marc Bonard, and Klaus Kern, Surface Scinece 492 (2001) 195, “Comparative study of the catalytic growth of patterned carbon nanotubes films”
    [14] 卓言, 2001年國立清華大學碩士論文
    [15] X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, and Z. Z. Chen, Thin Solid Films 339 (1999), “The formation conditions of carbon nanotubes array based on FeNi alloy island films”
    [16] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, and W. Y. Zho, Science 274 (1996) 1701, “ Large-scale synthesis of aligned carbon nanotubes”
    [17] Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synthetic Metals 108 (2000) 159, “Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition”
    [18] H. Murakai, M. Hirakawa, C. Tanaka, and H. Tamakawa, Appl. Phys. Lett. 76 (2000) 1776, “Field emission from well-aligned, patterned, carbon nanotubes emitters”
    [19] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, J. Appl. Phys. 91 (2002) 3847, “Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition”
    [20] M. P. Siegal, D. L .Overmyer, and P. P. Provencio, Appl. Phys. Lett. 80 (2002) 2171, “Precise control of multiwall carbon nanotubes diameters using thermal chemical vapor deposition”
    [21] Chris Bower and Otto Zhou, Appl. Phys. Lett. 77 (2000) 2767, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition”
    [22] Masako Yudasaka, Rie Kikuchi, Takeo Matsui, Yoshimasa Ohki, and Susumu Yoshimura, Appl. Phys. Lett. 67 (1995) 2477, “Specific conditions for Ni catalyzed carbon nanotubes growth by chemical vapor deposition”
    [23] L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X. Qian, Appl. Phys. Lett. 74 (1999) 644, “Growth of straight nanotubes with a cobalt-nickel catalyst by chemical vapor deposition”
    [24] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25, “Model of carbon nanotubes growth through chemical vapor deposition”
    [25] W. A. De Heer, A. Chatelain, D. Ugarte, Science 270 (1995) 1179, “A carbon nanotubes field-emission electron source”
    [26] P. G. Collins, A. Zettl, Appl. Phys. Lett. 69 (1999) 1969, “A simple and robust electron beam source from carbon nanotubes”
    [27] J. M. Bonard, H. Kind, T. Stockli, and L. Nilsson, Solid-State Elect. 45 (2001) 893, “Field emission from carbon nanotubes: the first five years”
    [28] P. J. de Pablo, S. Howell, S. Crittenden, B. Walsh, E. Grangnard, and R. Reifenberger, Appl. Phys. Lett. 62 (1999) 3941, “Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes”
    [29] S. Dimitrijevic, J. C. Withers, V. P. Mammana, O. R. Monteir, J. W. Ager, and I. G. Brown, Appl. Phys. Lett. 75 (1999) 5680, “Electron emission from films of carbon nanotubes and ta-C coated nanotubes”
    [30] Yahachi Saito, Sashiro Uemure, Carbon 38 (2000) 169, “Field emission from carbon nanotubes and its application to electron sources”
    [31] Encyclopedia of physical science and technology, vol. 2, 545
    [32] Encyclopedia of chemical technology, vol. 3, 246

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE