簡易檢索 / 詳目顯示

研究生: 葉庭愷
Yeh, Ting-Kai
論文名稱: 利用氫氘交換反應解構植物液泡質子傳送焦磷酸水解酶動態結構
Dynamics of the H+-translocating Pyrophosphatase Revealed by Hydrogen-Deuterium Exchange
指導教授: 潘榮隆
Pan, Rong-Long
口試委員: 潘榮隆
Rong-Long Pan
孫玉珠
Yuh-Ju Sun
許員豪
Yuan-Hao Hsu
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 質子傳送焦磷酸水解酶液相層析儀質譜儀電噴灑離子化氫氘交換
外文關鍵詞: H+-translocating pyrophosphatase, Liquid chromatography-mass spectrometry, Electrospray ionization, Hydrogen/deuterium exchange
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 質子傳送焦磷酸水解酶(簡稱H+-PPase; EC 3.6.1.1)存在於植物細胞,細菌、古生菌、以及一些原生生物中。藉由水解生物次級代謝產物(焦磷酸)提供能量驅動質子傳送至胞腔內。近年來已經解出了此酵素的3D構型,但是對於它的動態活動仍然所知甚少。因此,我們運用了氫/氘交換反應結合質譜偵測技術觀察出H+-PPase與受質類似物結合後的動態結構改變。當蛋白質置於重水溶液中,氘原子會與蛋白主鏈上NH的氫(Backbone amide hydrogens)做交換,進而被質譜儀所偵測。在此,辨別各部位氘原子的攝取量來洞察出整體結構動態的改變。在氫氘交換結果中,與受質類似物結合後形成了較為穩固的結構,質子傳送通道緊縮,許多區段都被保護住不易被氘置換,尤其是在高保守性的酵素活性中心。另外,靠近細胞質的第一,第五及第十一環圈蓋住了上方的受質結合位,變得使基質不易進入;胞腔內側的N端與第十二環圈可能防止質子回流到細胞質中。此研究能幫助我們更加了解酵素的動態機制,有助於將來在農業生物上的應用。


    H+-translocating pyrophosphatases (H+-PPase; EC 3.6.1.1) exists in various endomembranes of plants, bacteria, and some prokaryotes. It transports H+ into lumens at the cost of hydrolyzing the ''product of anabolic reactions'', inorganic pyrophosphate (PPi). Although the crystal structure of mung bean H+-PPase has been solved recently, the motions of H+-PPase is still unclear. Here, we applied hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) to monitor the dynamic of H+-PPase between the resting (apo form) and initiated states (bound with substrate analogue). When proteins were placed in a D2O solution, the backbone hydrogens, which exchange with deuterium, would be identified by MS. Accordingly, we discerned through the deuterium uptake to insight into the structural dynamic and conformational changes. HDX on the VrH+-PPase shows a significant protection againat exchange upon binding with substrate analogue, especially in the highly conserved PPi binging motif and reveals a rigid structure to form a narrow transport pathway. Additionally, Loop1, Loop5and Loop11, in the cytosolic site, exhibit a solvent inaccessible region and form a lid to cover the substrate binding pocket; N terminal and vacuolar lumen Loop12 may prevent proton back flow into the cytosol. These results highlight the more detail understanding the mechanism of VrH+-PPase and presumably for biological and agricultural interests.

    Introduction (1) Materials and Methods (5) VrH+-PPase cloning, expression and microsome isolation (5) VrH+-PPase purification (6) PPi hydrolysis activity assay and protein determination (7) SDS-PAGE and Western blotting analysis (7) Silver staining (8) HDX of VrH+-PPase (8) Pepsin digestion (9) High-performance liquid chromatography separation and MS Analysis (9) Results and Discussion (10) Expression and purification of VrH+-PPase (10) Enhanced digestion efficiency of VrH+-PPase (10) VrH+-PPase switches between two conformations (12) Peptide mapping of VrH+-PPase (13) Comparison of the R and I states of VrH+-PPase using HDX (13) Influence of the VrH+-PPase conformation on HDX of the cytosolic domain (14) Influence of the VrH+-PPase conformation on HDX of the lumen domain (15) Characterization of HDX in the loops (16) References (18) Figures (23) Figure 1. Three types of hydrogens found in peptides or proteins (24) Figure 2. The typical experimental workflow of HDX MS (24) Figure 3. SDS-PAGE and Western blotting analysis of purified VrH+-PPase (25) Figure 4. Pepsin digestion of the VrH+-PPase (26) Figure 5. MALDI-TOF mass spectrum (27) Figure 6. Pepsin digestion of the VrH+-PPase at the low concentration of DDM (28) Figure 7. PPi hydrolysis activity of wild-type VrH+-PPase (29) Figure 8. Peptic peptides coverage map of VrH+-PPase (30) Figure 9. HDX kinetics of all VrH+-PPase peptic peptides (33) Figure 10. Deuterium exchange of VrH+-PPase in the absence and presence of IDP (34) Figure 11. Differential deuterium uptake of VrH+-PPase (35) Figure 12. Deuteration behavior of VrH+-PPase in the R and I states (36) Figure 13. Deuterium exchange of VrH+-PPase upon binding with IDP (37) Figure 14. Comparison of deuteration behavior in the cytosolic view of VrH+-PPase (38) Figure 15. Comparison of deuteration behavior in the vacuolar lumen view of VrH+-PPase (39)

    Asaoka M, Segami S, Maeshima M. (2014). Identification of the critical residues for the function of vacuolar H+-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem 46, 1-12.
    Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science 176, 232-240.
    Baykov AA, Bakuleva NP, Rea PA. (1993). Steady-state kinetics of substrate hydrolysis by vacuolar H(+)-pyrophosphatase. A simple three-state model. Eur J Biochem 217, 755-762.
    Belogurov GA, Lahti R. (2002). A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277, 49651-4.
    Bradford MM. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72, 248-254.
    Coleman J, Blake-Kalff M, Davies E. (1997). Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2, 144-151.
    Cravello L, Lascoux D, Forest E. (2003). Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17. 2387-93.
    Drozdowicz YM, Rea PA. (2001). Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6, 206–211.
    Englander SW, Mayne L, Bai Y, Sosnick TR. (1997). Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci 6, 1101-09.
    Fiske CH, Subbarow Y. (1925). The colorimetric determination of phosphorous, J Biol Chem 66, 378–400.
    Flick JS, Johnston M. (1990). Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol Cell Biol 10, 4757-69.
    Fruton JS. (1970). The specificity and mechanism of pepsin action, Adv. Enzymol. Relat. Areas Mol. Biol 33, 401–443.
    Gerstein M, Lesk AM, Chothia C. (1994). Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739-49.
    Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL. (2004). Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1608, 190-9.
    Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL. (2013). Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding. J Biol Chem 288, 19312-20.
    Kellosalo J. (2012). The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337, 473-6.
    Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-5.
    Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ. (2012). Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484, 399-403.
    Liu TH, Hsu SH, Huang YT, Lin SM, Huang TW, Chuang TH, Fan SK, Fu CC, Tseng FG, Pan RL. (2009). The proximity between C-termini of dimeric vacuolar H+-pyrophosphatase determined using atomic force microscopy and a gold nanoparticle technique. FEBS J 276, 4381-94.
    Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ. (2010). Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72:47–60.
    Maeshima M. (2000). Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465. 37-51.
    Maeshima M. (2001). Tonoplast transporters. Organization and function. Annu Rev Plant Physiol Plant Mol. Biol 52, 469–497.
    Marcsisin SR, Engen JR. (2010). Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397, 967-72.
    Marty F. (1999). Plant vacuoles. Plant Cell 11, 587-600.
    Nakanishi Y, Saijo T, Wada Y, Maeshima M. (2001). Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276, 7654-60.
    Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L. (2013). Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One 8, e62488.
    Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D. (1992). Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17, 348-53.
    Schumacher K. (2006). Endomembrane proton pumps: connecting membrane and vesicle transport. Curr Opin Plant Biol 9, 595-600.
    Silva P, Gerós H. (2009). Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4, 718-26.
    Tsai JY, Kellosalo J, Sun YJ, Goldman A. (2014). Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct Biol 27, 38-47.
    Tzeng CM, Yang CY, Yang SJ, Jiang SS, Kuo SY, Hung SH, Ma JT, Pan RL. (1996). Subunit structure of vacuolar proton-pyrophosphatase as determined by radiation inactivation. Biochem J 316, 143-47.
    VanAken T, Foxall-VanAken S, Castleman S, Ferguson-Miller S. (1986). Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol 125,27-35.
    VanMontfort BA, Doeven MK, Canas B, Veenhoff LM, Poolman B, Robillard GT. (2002). Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta 1555, 111-5.
    Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL. (2005). Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1709, 84-94.
    Yan X, Watson J, Ho PS, Deinzer ML. (2004). Mass spectrometric approaches using electrospray ionization charge states and hydrogen-deuterium exchange for determining protein structures and their conformational changes. Mol Cell Proteomics 3, 10-23.
    Zhang HM, McLoughlin SM, Frausto SD, Tang H, Emmett MR, Marshall AG. (2010). Simultaneous reduction and digestion of proteins with disulfide bonds for hydrogen/deuterium exchange monitored by mass spectrometry. Anal Chem 82, 1450-4.
    Zhang J, Li J, Wang X, Chen J. (2011). OVP1, a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance. Plant Physiol Biochem 49, 33-38.
    Zhang Z, Smith DL. (1993). Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2, 522-531.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE