研究生: |
薛佳恩 Hsueh, Chia-En |
---|---|
論文名稱: |
資訊科技身份如何影響企業之數位轉型 How IT Identity Impacts on A Company's Digital Transformation |
指導教授: |
許裴舫
Hsu, Pei-Fang |
口試委員: |
雷松亞
Ray, Soumya 徐士傑 Hsu, Shih-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 服務科學研究所 Institute of Service Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 資訊科技身份 、數位轉型 、例行性使用 、創新性使用 、資訊科技使用行為 |
外文關鍵詞: | IT Identity, Digital Transformation, Routine Use, Innovative Use, IT Usage Behaviors |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討公司數轉型初期與後期,影響員工資訊科技身份 (IT Identity) 的重要因素以及資訊科技身份對其資訊科技使用行為之影響。當公司導入新的資訊系統時,員工的資訊科技身份——定義為個人將資訊科技的使用視為其自我意識不可或缺的一部分的程度——會影響他們例行使用和創新使用資訊系統的意願。然而,在主管與員工之間的期望與認知差異成了公司達到數位轉型目標(智慧製造與智能管理)的阻礙。研究設計了理論模型解釋資訊科技身份如何影響員工的例行性和創新性使用行為進而影響公司數位轉型之成效,並以公司在數位轉型中導入之兩個系統 Power BI 和 RPA為目標資訊系統。我們在公司發放線上問卷,分別針對參與數位轉型並接受過公司內部技術培訓或有自行開發Power BI和RPA經驗的使用者進行調查。研究結果顯示,員工的績效預期、努力預期及社交影響在不同的資訊科技種類和不同的數位轉型階段分別對個人的資訊科技身份產生影響。資訊科技身份對於員工在數位轉型初期和後期的例行性使用和創新性使用都有重要的影響,員工是否有創新性地使用資訊科技以追求更好的工作表現可作為評估數位轉型成效的標準。本研究對資訊系統導入過程中的資訊科技身份和使用行為進行了實證研究;在實務上我們提供公司主管在數位轉型中有效的資訊系統導入推行方法及成果評估策略的建議。
In this study, we investigate the employees’ IT identity and information technology (IT) use behaviors in the initial and the later stage of digital transformation in the company. When new IT is introduced to employees, users’ IT identity — defined as the extent to which an individual views the use of an IT as integral to his or her sense of self — may affect their intentions on routine use and innovative use to the IT. However, there are expectations and perception gaps among the managers and the employees for the digital transformation IT usage, which hinder the company from achieving the goal of digital transformation (intelligent manufacturing and management). We developed a model investigating factors that influence an individual’s IT identity, and how IT identity affects routine and innovative use behaviors, taking Power BI and RPA as two target ITs in digital transformation. To test the hypothesis, an online survey was launched to the company, separately targeting the employees involved in the digital transformation and had experience with technical training or development on Power BI and RPA. Our results indicated that performance expectancy, effort expectancy and social influence are important factors that influence a user’s IT identity, and their relative importance are distinct from different types of IT and in different stages of digital. IT identity is critical for routine use and innovative use in both the initial and the later stages. The research provides an empirical study on IT identity and usage behaviors in IT implementation. For practice, we contribute to offering the manager a feasible way to promote digital transformation and an evaluation model of digital transformation.
Aguirre, S., & Rodriguez, A. (2017). Automation of a business process using robotic process automation (RPA): A case study. In Workshop on engineering applications (pp. 65-71). Springer, Cham.
Benner, M. J., & Tushman, M. L. (2003). Exploitation, exploration, and process management: The productivity dilemma revisited. Academy of management review, 28(2), 238-256.
Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS quarterly, 399-426.
Burke, P. J., & Stets, J. E. (2009). Identity theory. Oxford University Press.
Carter, M., & Grover, V. (2015). Me, My Self, And I (T). Mis Quarterly, 39(4), 931-958.
Carter, M., Petter, S., Grover, V., & Thatcher, J. B. (2020). Information Technology Identity: A Key Determinant of IT Feature and Exploratory Usage. MIS Quarterly, 44(3).
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information systems research, 14(2), 189-217.
Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: a technological diffusion approach. Management science, 36(2), 123-139.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of applied social psychology, 22(14), 1111-1132.
Ebert, C., & Duarte, C. H. C. (2018). Digital Transformation. IEEE Softw., 35(4), 16-21.
Esmaeilzadeh, P. (2021). The Influence of Gamification and Information Technology Identity on Postadoption Behaviors of Health and Fitness App Users: Empirical Study in the United States. JMIR Serious Games, 9(3), e28282.
Ferrari, A., & Russo, M. (2016). Introducing Microsoft Power BI. Microsoft Press.
Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European business review.
Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2016). Options for formulating a digital transformation strategy. MIS Quarterly Executive, 15(2).
Hsieh, J. J., & Wang, W. (2007). Explaining employees’ extended use of complex information systems.
Hsieh, J. J., & Zmud, R. W. (2006). Understanding post-adoptive usage behaviors: A two-dimensional view.
Jasperson, J., Carter, P. E., & Zmud, R. W. (2005). A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS quarterly, 525-557.
Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS quarterly, 183-213.
Kwon, T. H., & Zmud, R. W. (1987). Unifying the fragmented models of information systems implementation. In Critical issues in information systems research (pp. 227-251).
Li, X., Hsieh, J. P. A., & Rai, A. (2013). Motivational differences across post-acceptance information system usage behaviors: An investigation in the business intelligence systems context. Information systems research, 24(3), 659-682.
Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business & Information Systems Engineering, 57(5), 339-343.
Parthasarathy, M., & Bhattacherjee, A. (1998). Understanding post-adoption behavior in the context of online services. Information systems research, 9(4), 362-379.
Rahrovani, Y., & Pinsonneault, A. (2020). Innovative IT use and innovating with IT: A study of the motivational antecedents of two different types of innovative behaviors. Journal of the Association for Information Systems, 21(4), 5.
Ringle, C. M., Wende, S., and Becker, J.-M. 2015. "SmartPLS 3." Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.
Saeed, K. A., & Abdinnour-Helm, S. (2008). Examining the effects of information system characteristics and perceived usefulness on post adoption usage of information systems. Information & management, 45(6), 376-386.
Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of human-computer studies, 64(9), 799-810.
Ulas, D. (2019). Digital transformation process and SMEs. Procedia Computer Science, 158, 662-671.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178.
Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the association for Information Systems, 17(5), 328-376.
Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118-144.