研究生: |
郭育豪 Guo, Yu-Hao |
---|---|
論文名稱: |
基於數位微流體液滴驅動可應用於正式與非正式科學教育的低成本多功能套件 A low cost, versatile kit based on digital microfluidics droplet actuation for formal and informal science education |
指導教授: |
楊雅棠
Yang, Ya-Tang 黃承彬 Huang, Chen-Bin |
口試委員: |
何宗易
Ho, Tsung-Yi 莊嘉揚 Juang, Jia-Yang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 電濕潤 、數位微流體 、同步微流體驅動 、化學教育 、晶片實驗室 、教育工具 |
外文關鍵詞: | electrowetting, digital microfluidics, community driven microfluidics, chemical education, lab on a chip, education tool |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹了一種基於數位微流體控制技術的教學套件。並利用化學發光的魯米諾化學式為實例。它還具有螢光成像功能和配備超聲波霧化器的封閉加濕外殼,以防止蒸發。該套件可在短時間內組裝,並且只需要基礎的電子和焊接培訓。該套件使本科和非本科學生,甚至有興趣的人都能以直觀的方式獲得動手操作,並接受培訓以熟悉數位微流體控制技術。
This paper describes an education kit based on digital microfludics. A protocol for luminol-based chemiluminescence experiment is reported as a specific example. It also has fluorescent imaging capability and closed humidified enclosure based on an ultrasonic atomizer to prevent evaporation. The kit can be assembled within a short period of time and with minimal training in electronics and soldering. The kit allows both undergraduate/graduate students and enthusiasts to obtain hands-experience microfluidics in an intuitive way and be trained to gain familiarity with digital microfluidics.
1. Convery N., Gadegaard N. 30 years of microfluidics. Micro and Nano Engineering 2, 76-91, (2019).
2. Rackus DG, Ridel-Kruse IH., Pamme N. Learning on a chip: Microfluidics for formal and informal science eduction., Biomicrofluidics. 13, 041501. (2019).
3. C.H. Legge, Chemistry under the microscope-Lab-on-a-Chip Technologies. J. Chem. Educ. 79, 173, (2002).
4. Fintschenko Y. Education: a modular approach to microfluidics in the teaching laboratory Lab Chip 11, 3394, (2011).
5. Mugele F., Baret J-C., Electrowetting: from basics to applications. J Phys. Condens. Matter. 17 705-774, (2005).
6. Teerasong and R. L. McClain, J. Chem. Educ. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis,88(4), 465–467 (2011).
7. L. Cai, Y. Wu, C. Xu, and Z. Chen, J. Chem. Educ. A Simple Paper-Based Microfluidic Device for the Determination of the Total Amino Acid Content in a Tea Leaf Extract,90(2), 232–234 (2013).
8. T. A. Davis, S. L. Athey, M. L. Vandevender, C. L. Crihfield, C. C. E. Kolanko,
S. Shao, M. C. G. Ellington, J. K. Dicks, J. S. Carver, and L. A. Holland, J. Chem. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics, Educ. 92(1), 116–119 (2015).
9.Nguyen, J. McLane, V. Lew, J. Pegan, and M. Khine , Shrink-film microfluidic education modules: Complete devices within minutes, Biomicrofluidics 5(2),022209 (2011).
10. L. E. Stallcop, Y. R. Álvarez-García, A. M. Reyes-Ramos, K. P. Ramos-Cruz,
M. M. Morgan, Y. Shi, L. Li, D. J. Beebe, M. Domenech, and J. W. Warrick, Razor-printed sticker microdevices for cell-based applications , Lab Chip 18(3), 451–462 (2018).
11. C. E. Owens and A. J. Hart, High-precision modular microfluidics by
micromilling of interlocking injection-molded blocks, Lab Chip 18(6), 890–901 (2018).
12.D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, Recent developments in paper-based microfluidic devices, Anal. Chem. 87(1), 19–41 (2015).
13. Lippmann G Relations entre les phenomenes electriques et capillary Ann. Chim. Phys. GABRIEL LIPPMANN AND THE CAPILLARY ELECTROMETER, 6 494, (1875).
14. Berge B Electrocapillarite et mouillge de films isolant par l’eau C. R. Acad. Sci. II 317 157 (1993).
15. Pollack M. G., Fair R. B. Shenderov A.D. Electrowetting-based actuation of liquid droplets for microfluidics applications. Appl. Phys. Lett. 77 1725, (2000).
16. Lee J., Kim C.J. Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromech. Syst. 9, 171, (2000).
17. Choi K., Ng A.H.C., Fobel R., Wheeler A.R. Digital Microfluidics Annu. Rev. Anal. Chem. 5, 413-440, (2012).
18. Jebrail MJ, Wheeler AR. Let’s get digital: digitizing chemical biology with microfluidics. Curr.Opin. Chem. Biol. 14, 574–81, (2000).
19. Pollack MG, Pamula VK, Srinivasan V, Eckhardt AE. 2011. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev. Mol. Diagn. 11 393–407 (2011).
20. Abdelgawad M., Wheeler A. R. Rapid prototyping in copper substrates for digital microfluidics. Advanced Materials. 19 , 133–37 (2007).
21.Abdelgawad M., Wheeler A. R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluidics and Nanofluidics. 4, 349–355 (2008).
22. Fobel, R., Fobel, C., Wheeler, A. R. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters. 102, 193513 (2013).
23.Yafia M., Ahmadi A., Hoorfar, M., Najjaran, H. Ultra-Portable Smartphone Controlled Integrated Digital Microfluidic System in a 3D-Printed Modular Assembly. Micromachines. 1289–1305 (2015).
24. Alistar M., Gaudenz U. OpenDrop: An Integrated Do-It-Yourself Platform for Personal Use of Biochips. Bioengineering. 4, 45 (2017).
25. Khan P. et al. Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses. Applied Biochemistry and Biotechnology. 173, 333–355 (2014).
26. Agresti J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Nat. Acad. Sci. 107, 4004–4009 (2010).
27. https://www.microfluidic-chipshop.com/catalogue/instruments/partnerinstruments/dropbot-digital-microfluidic-control-system). accessed on Oct 10, 2020,
28. Busnel J.M., Varenne, A., Descroix S., Peltre, G., Gohon Y., Gareil, P., Evaluation of capillary isoelectric focusing in glycerol-water media with a view to hydrophobic protein applications, Electrophoresis. 26, 3369–3379, (2005).
29. Chatterjee D., Shepherd H., Garrell R.L. Electromechanical model for actuating liquids in a two plate droplet microfluidic device. Lab Chip 9 1219–29, (2009).
30. H. J. J. Verheijen and M. W. J. Prins, Reversible Electrowetting and Trapping of Charge: Model and Experiments , Langmuir 1999, 15, 6616-6620, (1999)
31. Immersed AC electrospray (iACE) for monodispersed aqueous droplet generation
Zehao Pan, Yongfan Men, Satyajyoti Senapati, and Hsueh-Chia Chang, China, BIOMICROFLUIDICS 12, 044113 (2018)