簡易檢索 / 詳目顯示

研究生: 許詠傑
Hsu, Yung-Chieh
論文名稱: 雙腔型超導高頻共振腔之設計與利用軸向負載產生彈塑性變形進行調頻研究
Design of Two-Cell Superconducting RF Cavity and Pre-tuning by Elastoplastic Deformation under Axial Loading
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 蔣長榮
Chiang, Chun-Ron
林明泉
Lin, Ming-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 雙腔體超導共振腔電磁場共振頻率結構彈塑性變形結構模態振動
外文關鍵詞: two-cell SRF cavity, electromagnetic resonance frequency, elastoplastic deformation, structure modal vibration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文對雙腔型共振腔體外型進行設計,也對設計後之腔體給予軸向位移,進行彈塑性結構變形之分析。先針對1.5 GHz單腔體分析,了解TM010-like電磁場共振模態之特性,並以此為基礎對雙腔體共振腔主結構之直線段長度、連接段長度、加速電壓比值、耦合係數、大小圓管長度與並聯阻抗和品質因數之比值(R/Q)進行調整。文中運用有限單元軟體ANSYS建立模型,在合理邊界條件下建立1/4模型,分析之電磁場為TM010-like之對稱模態形式。研究發現,在直線段長度為17.167 mm且連接段為7.5 mm時,具有最佳的加速電壓比值,而大小圓管長度增加的影響甚低,並聯阻抗與品質因數之比值(R/Q)已達到設定之要求。
    文中也以銅材料參數進行模擬,給予大圓管端軸向位移,探討在彈塑性行為下之應力分布與電磁場共振頻率之變化,並研究改變厚度對於雙腔體共振腔之電磁場共振頻率之影響。本文亦探討彈塑性行為對於結構振動模態之影響,可知在受到軸向拉伸4 mm時,前三模態之結構自然頻率值下降25 %,受軸向壓縮4 mm之前三自然模態頻率值下降55 %。本文同時討論鈮材料拉伸曲線使用雙線性曲線擬合與多線性曲線擬合兩種材料模型對於電磁場共振頻率之影響,發現採用多線性曲線擬合可得較高之殘留位移量與頻率飄移量,兩者差異分別為4.64 %與6.12 %。CPU計算時間較採用雙線性曲線擬合的時間多出2倍。


    In order to design a 2-cell radio-frequency (RF) cavity, the characteristics of TM010-like mode based on 1-cell 1.5 GHz RF cavity is studied first. There are two TM010-like modes for 2-cell 1.5 GHz RF cavity, π/2-mode and π-mode, respectively. The lengths of the straight sections of main cavity structure and of the connecting pipe are both optimized to reach higher ratio of integrated accelerating voltage for copper cavity. Both of coupling factor (k) and field flatness (FF) are considered as the design basis, whereas, the ratio of shunt impedance to quality factor (R/Q) is also calculated. The 1/4 numerical models are built by the finite element code ANSYS since the TM010-like resonance mode is symmetric. The straight section length of the cavity equator is optimized to be 17.167 mm, whereas the connecting pipe 7.5 mm herein.
    The frequency shift of π-mode after pre-tuning process for copper RF cavity is verified with elastoplastic modeling, and the distribution of effective stress at various thickness changed is obtained.
    The natural frequency of 2-cell copper cavity during elastoplastic process are obtained. The first three natural frequencies decreases 25 % and 55 % as the cavity stretched and squeezed to 4 mm, respectively. Niobium RF cavity is analyzed with the elastoplastic stress-strain curve fitted by both bilinear curve and multilinear curves. It is found that the RF cavity with multilinear curve fitting has 4.64 % larger residual deformation and 6.12 % higher frequency shift for π-mode than the results obtained from the analysis model with bilinear curve fitting. The CPU computation time of multilinear curve fitting is doubled when compared with that having a bilinear one.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖表目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 5 第二章 共振腔理論分析 6 2.1 高頻電磁場理論 6 2.2 彈塑性理論 9 2.2.1 雙線性曲線擬合 9 2.2.2 結構彈塑性行為 9 第三章 有限單元分析 11 3.1 共振腔體有限單元分析 11 3.1.1 共振腔非線性分析 12 3.1.2 共振腔幾何模型與網格建立 13 3.1.3 材料參數 14 3.1.4 邊界條件 15 3.2 共振腔振動模態分析 16 3.3 共振腔之高頻電磁場共振頻率分析 17 第四章 結果與討論 20 4.1 共振腔體內部電磁場特性 20 4.2 單腔體共振腔主結構外緣直線段改變對電磁場共振頻率之影響 22 4.3 雙腔體共振腔設計 22 4.3.1 雙腔體共振腔主結構外緣直線段改變對電磁場共振頻率之影響 22 4.3.2 雙腔體共振腔連接段改變對電磁場共振頻率之影響 23 4.3.3 連接段長度對加速電壓比值、耦合係數之影響 24 4.3.4 連接段長度對時間差之影響 25 4.3.5 大圓管、小圓管長度改變 25 4.3.6 並聯阻抗與品質因數比值(R/Q)參數計算 26 4.4 軸向位移對雙腔體共振腔電磁場共振頻率之影響 27 4.4.1 銅雙腔體共振腔軸向位移與電磁場共振頻率、靈敏度之關係 27 4.4.2 銅雙腔體厚度改變對正反向調頻對電磁場共振頻率之影響 28 4.5 銅雙腔體共振腔彈塑性變形調頻對結構模態之影響 30 4.5.1 大圓管端可軸向自由移動結構共振模態分析 31 4.5.2 兩端固定之結構振動模態分析 31 4.6 鈮雙腔體共振腔彈塑性變形正向調頻對電磁場共振頻率之影響 32 第五章 結論與未來展望 35 參考文獻 37 圖表 38

    1. F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, "Radiation from Electrons in a Synchrotron." Physical Review Vol. 71, pp. 829-830, 1947.
    2. 國家同步輻射研究中心:https://www.nsrrc.org.tw/ retrieved on August 1, 2017
    3. H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q. S. Shu, M. Tigner, “Design Challenges for High-current Storage Rings,” Part. Accel. Vol. 40, pp. 17-41, 1992.
    4. T. Furuya, K. Akai, K. Asano, E. Ezura, K. Hara, “A Prototype Module of a Superconducting Damped Cavity for KEKB,” Proc. EPAC96, pp. 2121-2123, 1996.
    5. M. K Yeh, C. H. Lo, M. C. Lin, T. Y. Lin, “Multi-physics Pre-tuning Simulation and Testing of a Prototype 1.5-GHz SRF Cavity,” IEEE Transactions on Applied Superconductivity, Vol. 28, No. 4, pp. 1284-1284, June, 2018.
    6. H. Padamsee, “The Science and Technology of Superconducting Cavities for Accelerators,” Superconductor Science and Technology, Vol. 14, pp. 28-51, 2001.
    7. W. Singer, A. Brinkmann, D. Proch, X. Singer, “Quality Requirements and Control of High Purity Niobium for Superconducting RF Cavities,” Physica C: Superconductivity, 386, pp. 379-384, 2003.
    8. S. Belomestnykh, “The High Luminosity Performance of CESR with the New Generation Superconducting Cavity,” Report SRF 990407-09, Cornell University, Ithaca, New York, 1999.
    9. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF System Upgrade for Short Bunch Operation of CESR,” Report SRF 010717-05, Cornell University, Ithaca, New York, 1999.
    10. R. P. Walsh, R. R. Mitchell, V. T. Toplosky, R. C. Gentzlinger, “Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity,” 9th Workshop on RF Superconductivity, Santa Fe, New Mexico, USA, pp. 195-197, 1999.
    11. T. S. Byun, S. H. Kim, J. Mammosser, “Low-temperature Mechanical Properties of Superconducting Radio Frequency Cavity Materials,” Journal of Nuclear Materials, 392.3, pp. 420-426, 2009
    12. M. G. Rao, P. Kneisel, “Mechanical Properties of High RRR Niobium at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 40, pp. 1383-1390, 1994
    13. V. Shemelin, H. Padamsee, “The Optimal Shape of Cells of a Superconducting Accelerating Section,” NO. SRF-2002-01-28, 2002.
    14. V. D. Shemelin and G. H. Hoffstaetter, “First-Principle Approach for Optimization Cavity Shape for High Gradient and Low Loss,” Proceedings of IPAC12, New Orleans, Louisiana, USA, pp. 3015-3017, 2012.
    15. M. Meidlinger, T. L. Grimm, W. Hartung, “Design of Half-Reentrant SRF Cavities,” Proceedings of the 12th International Workshop on RF Superconductivity, Cornell University, Ithaca, New York, USA, pp. 268-271, 2005
    16. M.C. Lin, Ch. Wang, L. H. Chang, M. K. Yeh, F. S. Kao, “Effects of Structural Behavior on Electromagnetic Resonance Frequency of a Superconducting Radio Frequency Cavity,” Journal of Mechanics, 23.3, pp. 187-196, 2007
    17. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, M. J. Huang, “A Coupled-field Analysis on RF Cavity,” Particle Accelerator Conference, Chicago, USA, pp. 1207-1209, 2001.
    18. V. Medjidzade, S. Belomestnykh, R. L. Geng, H. Padamsee, V. Shemelin, and V. Veserevich, “Design of The CW Cornell ERL Injector Cryomodule,” Proceeding of the PAC’05, Knoxville, TN, pp. 4290-4292.
    19. H. Padamsee, J. Knobloch and T. Hays, RF Superconductivity for Accelerators, Wiley, New York, 1998.
    20. J. Knobloch, Advanced Thermometry Studies of Superconducting RF Cavities, Cornell University, 1997.
    21. N. Hartman, and R. A. Rimmer, "Electromagnetic, Thermal, and Structural Analysis of RF Cavities Using ANSYS," Proceedings of Particle Accelerator Conference, Chicago pp. 912-914, 2001.
    22. S. Belomestnykh, and V. Shemelin, "High-beta Cavity Design-A Tutorial." SRF International Workshop, Ithaca, New York. 2005.
    23. J. Rose, W. Gash, B. Kosciuk, V. Ravindranath, B. Sikora, S. Sharma, N. Towne, T. L. Grimm, C. H. Boulware, C. Krizmanich, B. Kuhlman, N. Miller, B. Siegel, M. Winowski, ”Design and Preliminary Test of The 1500 MHZ NSLS-II Passive Superconducting RF Cavity,” Proceedings of Particle Accelerator Conference, New York, USA, pp.910-912, 2011
    24. M. C. Lin, Ch. Wang, T. T. Yang, M. H. Tsai, L. H. Chang, G. H. Luo, M. S. Yeh, F. T. Chung, “Elastoplastic Buckling on The Bent Waveguide of CESR-Type SRF Cavity,” IEEE Transactions on Applied Superconductivity, Vol. 17, No. 2, pp. 1284-1284, June, 2007.
    25. 郭泓毅,超導共振腔之結構變形對內部電磁場特性之影響,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2013。
    26. 呂旼儒,超導共振腔中央直線段長度對電磁場特性之影響,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2014。
    27. 許周叡,圓柱型共振腔在軸向負載下之彈塑性變形對其高頻電磁場共振頻率之影響研究,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2015。
    28. 林子淵,共振腔受軸向負載下結構彈塑性變形之調整高頻電磁場共振頻率之研究,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2016。
    29. 吳金玲,雙腔體超導共振腔連接處長度對高頻電磁場模態之影響,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2018。
    30. G. W. Ellis and B. G. Smith, “Modal Survey of Medium Energy Superconducting Radio Frequency Cavity for Accelerator Production of Tritium Project,” 9th Workshop on RF Superconductivity, Santa Fe, New Mexico, 1999.
    31. 鍾明忠,共振腔結構受端面位移影響之模態分析與實驗,碩士論文,國立清華大學動力機械工程學系,新竹,台灣,2004。
    32. 蔡明訓,超導高頻共振腔的結構強化及振動模態研究,博士論文,國立台北科技大學,台北,台灣,2015。
    33. D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, New York, 1989.
    34. A. V. Kudrin, E. Y. Petrov, “Cylindrical Electromagnetic Waves in a Nonlinear Nondispersive Medium: Exact solutions of the Maxwell equations,” JEPT, Vol. 110, pp. 537-548, March, 2010.
    35. J. Chakrabarty, Theory of Plastic, Butterworth-Heinemann, Oxford, 2012.
    36. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
    37. R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed, Wiley, Danvers, MA, 2002.
    38. M. C. Lin, Ch. Wang, L. H, Chang, G. H. Luo, M. K. Yeh, “Effects of Material Properties on Resonance Frequency of a CESR-III Type 500 MHz SRF Cavity,” Proceedings of PAC2003, Portland, Oregon, U.S.A. pp. 1371-1373, 2003.
    39. S. S. Rao, Mechanical Vibrations, 5th ed, Pearson Inc., Singapore, 2011.
    40. N. J. Simon, E. S. Drexler and R. P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures, United States Government Publishing Office, 1992
    41. Matweb:http://www.matweb.com/ retrieved on May 10, 2018
    42. A. Saini, K.Ranjan, N. Solyak, S. Mishra, V. Yakovlev, “Designing of 9 Cell Reduced Beta Elliptical Cavity for High Intensity Proton Linac,” Proceedings of IPAC10, Kyoto, Japan, pp. 2908-2910, 2010.

    QR CODE