研究生: |
倪華詣 Ni, Hua-Yi |
---|---|
論文名稱: |
利用奈米3D微影技術製作微光學元件陣列 Fabrication of Micro Optical Elements Array by Nano 3D Lithography System |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
方維倫
Fang, Wei-Leun 張嘉展 Chang, Chia-Chan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 雙光子聚合 、微光學元件 、微透鏡陣列 、凸型 、凹型 |
外文關鍵詞: | Two-photon Polymerization, Micro-optical Array, MLA, Convex, Concave |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將提供以奈米3D微影技術為一加工平台製作微光學元件,並以製作微透鏡陣列(Microlens Array, MLA) 作為本研究重點,另外製作特殊中空、階梯型微光學元件,並驗證其可行性。
隨著光學感測器的發展,微光學元件需求增大,其中又以微透鏡陣列等繞射元件之製造百家爭鳴,而現今的微透鏡製造技術較少直接製作且具有隨意非球面輪廓的光學元件陣列,因此本研究將結合奈米3D微影技術能快速製作複雜3D微結構的優勢,開發出一個方法製作複雜且大面積之微透鏡陣列。
本研究將利用奈米級3D 微影技術(Nano 3D Lithography, N3L),此技術結合雙光子吸收(Two Photon Absorption, TPA)與光致聚合技術(Photon Polymerization)與雷射直寫技術(laser-direct writing)概念,其加工精度可至次微米等級,並且可加工任意形狀的3D 微結構。利用此技術製作的結構解析度非常高,表面粗糙度佳等特性,隨機任意的非球面係數曲面的微光學元件更能表現此製程的優越性。
本研究將針對微光學陣列進行製作,透過數值運算之路徑規劃,進行製作凸型(Convex)、凹型(Concave)非球面微透鏡陣列,同時也針對中空、階梯型、有銳角等複雜的微光學元件結構進行製程開發,並加入自動化拼接與雷射加工功率自動化回授修正模組以利製作大面積陣列,以利後續應用或是翻模製作成模具量產之可行性。
In this study, we will take Nano 3D Lithography system (N3L) as the working platform for fabricating micro optical elements and the research focus is microlens array (MLA). Furthermore, the free form hollow structure and grating structure will be manufactured to verify theirs feasibility.
Focus on microlens array. There were few technologies, which can directly produce aspheric lens micro optical array. Therefore, this study will develop large-area micro-optical components with a complex profile through the N3L. The Nano 3D Lithography (N3L) combines two-photon absorption, photon polymerization and laser-direct writing conceptions, so it can fabricate arbitrarily 3D microstructure with submicron resolution. By manufacturing arbitrarily curved surface, the superiority of this process (truly 3D, high precision and good roughness) can been demonstrated.
In this study, we focus on fabricating MLA. Through the numerical processing path planning, it can make the Convex and Concave two types of MLA by N3L. In addition, we also develop the process for producing complex micro-optical components such as hollow and grating structure. We have added automated splicing and auto-correction module for laser processing power to fabricate large-area micro-optical components for application or making molds for mass production.
[1] S.-H. Park, D.-Y. Yang, and K.-S. Lee, "Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices," vol. 3, no. 1‐2, pp. 1-11, 2009, doi: doi:10.1002/lpor.200810027.
[2] X. Z. Dong, Z. S. Zhao, and X. M. Duan, "Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication," Applied Physics Letters, vol. 92, no. 9, Mar 2008, Art no. 091113, doi: 10.1063/1.2841042.
[3] J. Fischer, G. von Freymann, and M. Wegener, "The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography," Advanced Materials, vol. 22, no. 32, pp. 3578-+, Aug 2010, doi: 10.1002/adma.201000892.
[4] J. Fischer and M. Wegener, "Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy Invited," Optical Materials Express, vol. 1, no. 4, pp. 614-624, Aug 2011, doi: 10.1364/ome.1.000614.
[5] J. K. Gansel et al., "Gold Helix Photonic Metamaterial as Broadband Circular Polarizer," Science, vol. 325, no. 5947, pp. 1513-1515, Sep 2009, doi: 10.1126/science.1177031.
[6] C. Marichy, N. Muller, L. S. Froufe-Perez, and F. Scheffold, "High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide," Scientific Reports, vol. 6, Feb 2016, Art no. 21818, doi: 10.1038/srep21818.
[7] I. Sakellari, X. H. Yin, M. L. Nesterov, K. Terzaki, A. Xomalis, and M. Farsari, "3D Chiral Plasmonic Metamaterials Fabricated by Direct Laser Writing: The Twisted Omega Particle," Advanced Optical Materials, vol. 5, no. 16, Aug 2017, Art no. 1700200, doi: 10.1002/adom.201700200.
[8] M. Deubel, M. Wegener, A. Kaso, and S. John, "Direct laser writing and characterization of "Slanted Pore" Photonic Crystals," Applied Physics Letters, vol. 85, no. 11, pp. 1895-1897, Sep 2004, doi: 10.1063/1.1792802.
[9] N. Muller, J. Haberko, C. Marichy, and F. Scheffold, "Silicon Hyperuniform Disordered Photonic Materials with a Pronounced Gap in the Shortwave Infrared," Advanced Optical Materials, vol. 2, no. 2, pp. 115-119, Feb 2014, doi: 10.1002/adom.201300415.
[10] A. Ovsianikov et al., "Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication," Acs Nano, vol. 2, no. 11, pp. 2257-2262, Nov 2008, doi: 10.1021/nn800451w.
[11] 吳崇瑄, "奈米3D微影技術應用於微光學元件製作," 國立清華大學 動力機械工程學系 碩士論文, 2018.
[12] K. I. a. H. K. Shoji Maruo, "Submicron manipulation tools driven by light in a liquid," Applied Physics 2003, doi: 10.1063/1.1533853兴.
[13] Chih-Lang Lin, * Yi-Hsiung Lee,2 Chin-Te Lin,4 Yi-Jui Liu,2,3 Jiann-Lih Hwang,2 Tien-Tung Chung,4 and Patrice L. Baldeck1,5, "Multiplying optical tweezers force using a micro-lever," OPTICS EXPRESS, 2011.
[14] P. L. Baldeck et al., "Optically driven Archimedes micro-screws for micropump applications: multiple blade design," vol. 8097, p. 809713, 2011, doi: 10.1117/12.893679.
[15] J. Glückstad et al., "Optical screw-wrench for interlocking 2PP-microstructures," vol. 9764, p. 97641E, 2016, doi: 10.1117/12.2209325.
[16] S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography," Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 533-539, 2003, doi: 10.1109/jmems.2003.817894.
[17] F. Klein et al., "Elastic fully three-dimensional microstructure scaffolds for cell force measurements," Adv Mater, vol. 22, no. 8, pp. 868-71, Feb 23 2010, doi: 10.1002/adma.200902515.
[18] A. Marino, C. Filippeschi, V. Mattoli, B. Mazzolai, and G. Ciofani, "Biomimicry at the nanoscale: current research and perspectives of two-photon polymerization," Nanoscale, vol. 7, no. 7, pp. 2841-50, Feb 21 2015, doi: 10.1039/c4nr06500j.
[19] A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, "Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine," Applied Surface Science, vol. 253, no. 15, pp. 6599-6602, 2007, doi: 10.1016/j.apsusc.2007.01.058.
[20] A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J Tissue Eng Regen Med, vol. 1, no. 6, pp. 443-9, Nov-Dec 2007, doi: 10.1002/term.57.
[21] K. S. Worthington et al., "Two-photon polymerization for production of human iPSC-derived retinal cell grafts," Acta Biomaterialia, vol. 55, pp. 385-395, Jun 2017, doi: 10.1016/j.actbio.2017.03.039.
[22] P.-Y. Chen, "Fabrication of Anti-wetting Surfaces by Sol-gel Process and Two-photon Polymerization," NTHU MSE Master Thesis, 2018.
[23] 陳政翰, "雙光子3D微加工系統之研發," 國立清華大學 動力機械工程學系 碩士論文, 2015.
[24] 廖偉倩, "奈米3D微影技術應用於錐狀微結構之製作," 國立清華大學 奈米工程與微系統研究所 碩士論文, 2016.
[25] 游鈞文, "奈米3D微影技術之加工參數優化," 國立清華大學 動力機械工程學系 碩士論文, 2017.
[26] 葉哲瑋, "具大面積自動化加工之奈米3D微影系統," 國立清華大學 奈米工程與微系統研究所 碩士論文, 2017.
[27] E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, and T. Veres, "Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays," Microelectronic Engineering, vol. 86, no. 11, pp. 2255-2261, 2009, doi: 10.1016/j.mee.2009.04.001.
[28] K. Lee et al., "Self-assembly of amorphous calcium carbonate microlens arrays," Nature Communications, vol. 3, Mar 2012, Art no. 725, doi: 10.1038/ncomms1720.
[29] F. Chen et al., "Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method," Optics Express, vol. 18, no. 19, pp. 20334-20343, Sep 2010, doi: 10.1364/oe.18.020334.
[30] C. C. Chiu and Y. C. Lee, "Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method," Optics Express, vol. 20, no. 6, pp. 5922-5935, Mar 2012, doi: 10.1364/oe.20.005922.
[31] K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, "High-resolution maskless lithography," Journal of Microlithography Microfabrication and Microsystems, vol. 2, no. 4, pp. 331-339, Oct 2003, doi: 10.1117/1.1611182.
[32] K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, "Fabrication of three-dimensional microstructure using maskless gray-scale lithography," Sensors and Actuators a-Physical, vol. 130, pp. 387-392, Aug 2006, doi: 10.1016/j.sna.2005.12.008.
[33] https://www.lavisionbiotec.com/products/trim-scope-ii-1.html?fbclid=IwAR1DQ2l4yOvzHbCPESGmByhWKmpYECHQ_Aj1FvqXyJR17E8r2WHWXA6oX4.
[34] S. R. a. H. Aaron, "http://microscopy.berkeley.edu/courses/TLM/2P/?fbclid=IwAR2rNCdqokFPl_dDZnGeBXVcMPdmNLgedjFNWO3PaWV3yTi5T11zITjkvnoImage by Steve Ruzin and Holly Aaron, UC Berkeley."
[35] A. R. Barron, "Physical Methods in Chemistry and Nano Science," 2015. Rice University.
[36] Shoji Maruo1, Takuya Hasegawa1, and Naoki Yoshimura1, "Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures," OPTICS EXPRESS, 2009.
[37] O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, "Optimal local shape description for rotationally non-symmetric optical surface design and analysis," Optics Express, vol. 16, no. 3, pp. 1583-1589, Feb 2008, doi: 10.1364/oe.16.001583.
[38] L. J. Jiang et al., "Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy," Optics Letters, vol. 39, no. 10, pp. 3034-3037, May 2014, doi: 10.1364/ol.39.003034.
[39] A. Zukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, "Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics," Laser & Photonics Reviews, vol. 9, no. 6, pp. 706-712, Nov 2015, doi: 10.1002/lpor.201500170.