研究生: |
黃君逸 Huang, Chun I |
---|---|
論文名稱: |
銳鈦礦二氧化鈦/碳殼層結構應用於鋰硫電池電化學特性之研究 Investigation of Electrochemical Properties of Anatase TiO2/Carbon Shell Structure Applied to Lithium-Sulfur Batteries |
指導教授: |
蔡哲正
Tsai, Cho Jen 李紫原 Lee, Chi Young |
口試委員: |
蔡哲正
李紫原 俎永熙 盧明昌 Tsai, Cho Jen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 鋰硫電池 、殼層結構 、二氧化鈦 、碳硫複合材料 |
外文關鍵詞: | Lithium sulfur batteries, Shell structure, TiO2, Carbon sulfur composite materials |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這一世代,因為科技快速地發展,環境友善的議題隨之增加,儲能裝置的重要性以及需求亦隨之提高。
本研究有關鋰硫電池,鋰硫電池為下一世代最有前景的儲能材料之一,因為其高能量密度以及硫的經濟實惠價格。然而,因為硫有不佳的電子導電度而絕緣,所以活性硫利用不佳,其中間產物長鏈鋰硫化合物易溶於電解液當中,造成活性物質的流失,阻抗提升,電容量降低。
為解決這些問題,我們利用ZnS為前驅物,將銳鈦礦TiO2和碳披覆在表面上,最後利用Fe3+離子氧化S2-離子,合成出S/TiO2/C之殼層結構。TiO2/C殼層兼具物理阻隔以及化學方式吸附鋰硫化合物,而石墨化碳殼層進而提升導電能力。
當ZnS/TEOTi的莫耳比為15時,S/TiO2的硫重有77 %,其第一百圈之電容量為733 mAh g-1 (0.5 C),比奈米商用硫第一百圈電容量560 mAhg-1(0.5 C)來的高。最佳化的S/TiO2/C陰極材料其硫重56.8 wt%、石墨化碳重18.3 wt%,由ZnS/TiO2/C製備而成而碳來源重14 wt%,一百圈充放電過後依然保持905 mAhg-1(0.5 C),且阻抗最低。
In this generation, the importance of and the demands from the energy storage devices are much more than before because of the environmentally friendly issue arising with the technology developing.
This investigation revealed the lithium sulfur battery which is one of the most promising energy storage materials in the next generation due to high energy density and economic price of the sulfur. Nevertheless, the sulfur which has poor electron conductivity was insulated, so the active sulfur was not fully utilized. The intermediate, long chain lithium sulfide can easily dissolve into electrolyte; as a result, the active material lost, resistance increased and capacity decayed.
In order to solve these problems, we fabricated ZnS as the precursor, then we coated anatase TiO2 and carbon on the surface. Finally, S2- ions were oxidized by Fe3+ ions to form S/TiO2/C structure. The TiO2/C shell combined the advantages of physically separating particles, chemical trapping the lithium sulfide, while graphic carbon provided improved electronic conductivity.
When the molar ratio of ZnS/TEOTi was 15, the sulfur weight percent of S/TiO2 was 77 %. The capacity of S/TiO2 was 733 mAhg-1 (0.5 C) at 100th cycle. The capacity of S/TiO2 was higher than the capacity of commercial nano sulfur which was 560 mAhg-1 (0.5 C) at 100th cycle. The optimized S/TiO2/C cathode material which had 56.8 wt% sulfur and 18.3 wt% graphic carbon was made from ZnS/TiO2/C and still maintained the capacity at 905 mAhg-1 (0.5 C) after 100 cycles and had the lowest resistance when the carbon source was 14 wt%.
[1] H. Farhangi, "The Path of the Smart Grid," Ieee Power & Energy Magazine, vol. 8, pp. 18-28, 2010.
[2] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, et al., "Smart Grid Technologies: Communication Technologies and Standards," Ieee Transactions on Industrial Informatics, vol. 7, pp. 529-539, 2011.
[3] Environmnetal Protection Administration, R.O.C(Taiwan), http://www.epa.gov.tw/ct.asp?xItem=10052&ctNode=31352&mp=epa, 2015.
[4] Wikipedia, "Electric vehicle," https://en.wikipedia.org/wiki/Electric_vehicle.
[5] M. S. Whittingham, "Electrical Energy Storage and Intercalation Chemistry," Science, vol. 192, pp. 1126-1127, 1976.
[6] J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, et al., "Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings," Resources, Conservation and Recycling, vol. 54, pp. 229-234, 2010.
[7] Oxis Energy, http://www.oxisenergy.com/technology/.
[8] Anicenne Energy, http://www.rechargebatteries.org/wp-content/uploads/2015/01/Avicenne-market-review-Nive-2014.pdf.
[9] W. Nehb and K. Vydra, "Sulfur," in Ullmann's Encyclopedia of Industrial Chemistry, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
[10] Wikipedia, "Sulfur," https://en.wikipedia.org/wiki/Sulfur.
[11] J. Wang, J. Yang, C. Wan, K. Du, J. Xie, and N. Xu, "Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries," Advanced Functional Materials, vol. 13, pp. 487-492, 2003.
[12] 蘇明德(2007):〈硫的自述〉,《科學發展》,413:58-65。
[13] S. Lower, "Changes of State," Chem. Virtual textbook, vol. 7.
[14] U. C. Wiki, "Chemistry of Sulfur," http://chemwiki.ucdavis.edu/Core/Inorganic_Chemistry/Descriptive_Chemistry/Elements_Organized_by_Block/2_p-Block_Elements/Group_16%3A_The_Oxygen_Family/Chemistry_of_Sulfur.
[15] H. Park, H. S. Koh, and D. J. Siegel, "First-Principles Study of Redox End Members in Lithium–Sulfur Batteries," The Journal of Physical Chemistry C, vol. 119, pp. 4675-4683, 2015.
[16] Wikipedia, "Lithium," https://en.wikipedia.org/wiki/Lithium.
[17] 蘇明德(2015):〈鋰的自述〉,《科學發展》,509:60-67。
[18] C. L. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, et al., "Cold melting and solid structures of dense lithium," Nat Phys, vol. 7, pp. 211-214, 2011.
[19] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, 2001.
[20] D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, "A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions," Solid State Ionics, vol. 148, pp. 405-416, 2002.
[21] Wikipedia, "Zinc sulfide," https://en.wikipedia.org/wiki/Zinc_sulfide.
[22] L. He, X.-Z. Liao, K. Yang, Y.-S. He, W. Wen, and Z.-F. Ma, "Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries," Electrochimica Acta, vol. 56, pp. 1213-1218, 2011.
[23] N. Ding, Y. Lum, S. Chen, S. W. Chien, T. S. A. Hor, Z. Liu, et al., "Sulfur-carbon yolk-shell particle based 3D interconnected nanostructures as cathodes for rechargeable lithium-sulfur batteries," Journal of Materials Chemistry A, vol. 3, pp. 1853-1857, 2015.
[24] N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, et al., "Photoluminescence and magnetic properties of Fe-doped ZnS nano-particles synthesized by chemical co-precipitation," Applied Surface Science, vol. 257, pp. 8762-8766, 2011.
[25] H. Tong, Y.-J. Zhu, L.-X. Yang, L. Li, L. Zhang, J. Chang, et al., "Self-Assembled ZnS Nanostructured Spheres: Controllable Crystal Phase and Morphology," The Journal of Physical Chemistry C, vol. 111, pp. 3893-3900, 2007.
[26] H. Katsuhiko and K. Osamu, "AC-Thin Film ZnS:Mn Electroluminescent Device Prepared by Metal Organic Chemical Vapor Deposition," Japanese Journal of Applied Physics, vol. 24, p. 1484, 1985.
[27] Sony, http://www.sonyenergy-devices.co.jp/en/keyword/, 1991.
[28] L. F. Nazar, M. Cuisinier, and Q. Pang, "Lithium-sulfur batteries," MRS Bulletin, vol. 39, pp. 436-442, 2014.
[29] R. D. Rauh, F. S. Shuker, J. M. Marston, and S. B. Brummer, "Formation of lithium polysulfides in aprotic media," Journal of Inorganic and Nuclear Chemistry, vol. 39, pp. 1761-1766, 1977.
[30] Y.-S. Su and A. Manthiram, "A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer," Chemical Communications, vol. 48, pp. 8817-8819, 2012.
[31] A. Manthiram, Y. Fu, S.H. Chung, C. Zu, and Y.S. Su, "Rechargeable Lithium–Sulfur Batteries," Chemical Reviews,vol. 114 (23), pp. 11751–11787, 2014.
[32] Y. Yang, G. Zheng, and Y. Cui, "Nanostructured sulfur cathodes," Chemical Society Reviews, vol. 42, pp. 3018-3032, 2013.
[33] A. Jozwiuk, H. Sommer, J. Janek, and T. Brezesinski, "Fair performance comparison of different carbon blacks in lithium–sulfur batteries with practical mass loadings – Simple design competes with complex cathode architecture," Journal of Power Sources, vol. 296, pp. 454-461, 2015.
[34] Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney, and Y. Cui, "High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries," Journal of the American Chemical Society, vol. 134, pp. 15387-15394, 2012.
[35] H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, and L. Chen, "Monodispersed Sulfur Nanoparticles for Lithium–Sulfur Batteries with Theoretical Performance," Nano Letters, vol. 15, pp. 798-802, 2015.
[36] C. Liang, N. J. Dudney, and J. Y. Howe, "Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery," Chemistry of Materials, vol. 21, pp. 4724-4730, 2009.
[37] N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, et al., "High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating," Chemical Communications, vol. 48, pp. 4106-4108, 2012.
[38] S. S. Zhang, "Role of LiNO3 in rechargeable lithium/sulfur battery," Electrochimica Acta, vol. 70, pp. 344-348, 2012.
[39] X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L. F. Nazar, "A highly efficient polysulfide mediator for lithium–sulfur batteries," Nat Commun, vol. 6, pp. 5682, 2015.
[40] X. Ji, K. T. Lee, and L. F. Nazar, "A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries," Nat Mater, vol. 8, pp. 500-506, 2009.
[41] G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, and Y. Cui, "Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries," Nano Letters, vol. 11, pp. 4462-4467, 2011.
[42] S. Evers and L. F. Nazar, "Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content," Chemical Communications, vol. 48, pp. 1233-1235, 2012.
[43] G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, and J. Geng, "Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries," Nature Communications, vol. 7, pp. 10601, 2016.
[44] H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, et al., "Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries," Scientific Reports, vol. 3, p. 1910, 2013.
[45] Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, et al., "Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries," Nat Commun, vol. 4, p. 1331, 2013.
[46] M. Yu, J. Ma, H. Song, A. Wang, F. Tian, Y. Wang, et al., "Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries," Energy & Environmental Science, vol. 9, pp. 1495-1503, 2016.
[47] X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, et al., "Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The “Goldilocks” Principle," Advanced Energy Materials, vol. 6, 2016.
[48] C. J. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, and L. F. Nazar, "Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss," Chemical Communications, vol. 51, pp. 2308-2311, 2015.
[49] Y.-S. Su and A. Manthiram, "Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer," Nat Commun, vol. 3, p. 1166, 2012.
[50] H. Yao, K. Yan, W. Li, G. Zheng, D. Kong, Z. W. Seh, et al., "Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface," Energy & Environmental Science, vol. 7, pp. 3381-3390, 2014.
[51] J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abruña, "Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies," The Journal of Physical Chemistry C, vol. 115, pp. 25132-25137, 2011.
[52] M. Barghamadi, A. S. Best, A. I. Bhatt, A. F. Hollenkamp, M. Musameh, R. J. Rees, et al., "Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution?," Energy & Environmental Science, vol. 7, pp. 3902-3920, 2014.
[53] D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, and J. Affinito, "On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries," Journal of The Electrochemical Society, vol. 156, pp. A694-A702, 2009.
[54] S. Xiong, K. Xie, Y. Diao, and X. Hong, "Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries," Journal of Power Sources, vol. 246, pp. 840-845, 2014.
[55] J. Zheng, D. Lv, M. Gu, C. Wang, J.-G. Zhang, J. Liu, et al., "How to Obtain Reproducible Results for Lithium Sulfur Batteries?," Journal of The Electrochemical Society, vol. 160, pp. A2288-A2292, 2013.