研究生: |
韓喨宇 Han, Liang-Yu |
---|---|
論文名稱: |
單晶矽背面深蝕刻V型溝槽太陽能電池之研究 Study of Single Crystalline Silicon Solar Cells with Deeply Etched Trenches on the Rear Side |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 深蝕刻 、溝槽結構 、太陽能電池 |
外文關鍵詞: | Deeply Etched, Trenches, Solar Cell |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
提昇單晶矽太陽能電池方法有很多種,而本文是利用背面深蝕刻結構去提昇光電流以達到增加太陽電池效率。有別於一般孔洞太陽能電池,我們採用極深蝕刻,並且將此結構運用於背面上。其目的是為了減少載子傳輸距離,因而可以迅速的到達正背面電極而減少復合,並且比平面薄型化的太陽能電池更有較多吸收空間;並且利用深蝕刻斜面達到光在矽內部的反射以拉長光路徑,進而達到吸收更完全;最後由於V型溝槽結構,增加電極和半導體接觸面積而增加載子蒐集能力,以上的三大好處將可以有效的提昇光電流。
首先在(100)的矽晶圓上先蓋上SiNX當hard mask,再用黃光微影技術定義出圖樣,即可用KOH非等向性蝕刻特性,在矽晶圓上蝕刻出V型的長溝,深度為130μm∼140μm、180μm∼190μm、240μm∼245μm。此一研究中,我們發現當孔洞深度為240μm∼245μm最深時,有最佳的短路電流密度,電流有明顯隨著蝕刻深度增加而增加比起平面的太陽能電池參考片(34.066mA/cm2)增加10%,達到37.636mA/cm2,效率也從原來13.095%提昇至14.731%,成長幅度超過11%。和薄片(厚度250μm)效率(14.464%)相比,也有1.8%幅度的成長,更不用說有經過修補缺陷後的深蝕刻太陽能電池(效率超過15%),因此深蝕刻結構是能夠提昇整體效率的。
而我們發現深蝕刻雖然可以有效提昇光電流,但是在蝕刻過程中卻會造成鉀金屬殘留,造成缺陷。所以經由溼式蝕刻去除表面一層,可以達到去除鉀離子殘留的目的。而經由此步驟,lifetime、EQE、效率都能再次提昇。最後因為經過texture和深蝕刻過程,表面會造成斷鍵缺陷,所以再經由passivation去修補進而再次提昇效率,經由以上二步驟方法可以成功的使太陽能電池效率突破15%來到15.3%左右,成長幅度大約4%。
最後未來展望提出背面電極採用網版印刷電極,在RTA燒結下可以再進一步提昇VOC和JSC,但是需要改善製成條件,才能有效的提昇效率。
[1] D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
[2] William Shockley, and Hans J. Queisser, “Detailed Balance Limit of Efficiency of p-nJunction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510-519, 1961.
[3] Jianhua Zhao, Aihua Wang, Pietro P. Altermatt, Stuart R. Wenham, Martin A. Green,”24% Efficient perl silicon solar cell:Recent improvements in high efficiency silicon cell research”,Solar Energy Materials and Solar Cells, 41 /42 ,pp87-99,1996.
[4] J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “24% Efficient Silicon Solar Cells with Double Layer Antireflection Coatings and Reduced Resistance Loss,” Appl. Phys. Lett., vol 66, pp. 3636-3638, 1995.
[5] T. Juvonen, J. Härkönen, and P. Kuivalainen, “High Efficiency Single Crystalline Silicon Solar Cells,” Physica Scripta, T101, pp. 96-98, 2002.
[6] J. Y. Lin, H. L. Hwang and C. Y. Sun, “Photovoltaic Improvement of Single-Crystalline Si Space Solar Cell”, National EDMS, pp. 167
[7] C. T. Sah, “Reduction of Solar Cell Efficiency Across the BackSurface Field Junction”, Solid State Electronics, Vol. 31, pp.451-457, 1984.
[8] Ming-Hui Chiu, Deeply Etched Single Crystalline Silicon Solar Cells, National Tsing Hua University, Hsinchu, 2009.
[9] T. Lauinger, J. Schmidt, A. G. Aberle, and R. Hezel, “Record low surface recombination velocities on 1 Ω cm p-silicon using remote plasma silicon nitride passivation,” Appl. Phys. Lett., vol. 68, no. 9, pp. 1232-1234, 1996.
[10] A. G. Aberle and R. Hezel, “Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride,” Progress in Photovoltaics: Research and Applications, vol. 5, pp. 29-50, 1997.
[11] B. Sopori and Y. Zhang, “H-Diffusion Mechanism(s) in PECVD Nitride Passivation of Si Solar Cells,” NCPV 1st Conf. Program Review Meeting, Lakewood Colorado, October 2001, pp. 14-17.
[12] A. Bentzen, A. Ulyashin, A. Suphellen, E. Sauar, D. Grambole, D. N. Wright, E.S. Marstein, B. G. Svensson, and A. Holt, ”Surface Passivation of Silicon Solar Cells by Amorphous Silicon/Silicon Nitride Dual Layers,” 15th International Photovoltaic Science & Engineering Conference (PVSEC-15), Shanghai China, 2005, pp. 316-317.
[13] I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla,“Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx: H films,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2199-2201, 2001.
[14] S. K. Dhungel, J. Yoo, K. Kim, B. Karunagaran, H. Sunwoo, D. Mangalaraj, and J. Yi, “Effect of pressure on surface passivation of silicon solar cell by forming gas annealing,” Mater. Sci. Semicond. Process., vol. 7, pp.427-431, 2004.
[15] V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells,” Appl. Phys. Lett., vol. 92, no. 6, pp. 063510, 2008.
[16] Yen-Cheng Hu, Study of Crystalline Silicon Solar Cells Employing Nitric Acid Oxidation Technique and Forming Gas Annealing, National Tsing Hua University, Hsinchu, 2009.
[17] Yeng-Cheng Hu, Ming-Hui Chiu, Jing-Long Tsai, and Likarn Wang, “Efficiency Improvement of Silicon Solar Cells by Nitric Acid Oxidization, Institute of Photonics Technologies”, Jpn. J. Appl. Phys.,pp.022301,2010
[18] B. L. Sopori, X. Deng, J. P. Benner, A. Rohatgi, P. Sana, S. K. Estreicher, Y. K. Park, M. A. Roberson, “Hydrogen in silicon A discussion of diffusion and passivation mechanisms,” Sol. Energy Mater. Sol. Cells., vol. 41/42, pp. 159-169, 1996.
[19] 施敏原著, 黃調元譯, 半導體元件物理與製造技術.
[20] F. Huster, “Investigation of the Alloying Process of Screen Printed Aluminium Pastes for the BSF Formation on Silicon Solar Cells,” 20th European Photovoltaic Solar Energy Conference and Exhibition, 2005.
[21] http://ezphysics.nchu.edu.tw/prophys/electron/lecturenote/PNdiode.pdf
[22] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, Chap. 3, John Wiley & Sons, Ltd, 2003.
[23] S.O. Kasap, “Optoelectronics and Photonics Principles and Practices”, Chapter 6, Photovoltaic Devices.
[24] R. Hulstrom, R. Bird, and C. Riordan, “Spectral Solar Irradiance Data Sets for Selected Terrestrial Conditions,” Sol. Cells, vol. 15, pp. 365-391, 1985.
[25] 蕭立君, 抗反射層膜及稜鏡覆蓋物對Ⅲ-Ⅴ族太陽電池特性影響研究, 中原大學電子工程學系碩士論文, 民國93年
[26] 梁逸翔, 寬能隙半導體氮化矽及氧化鋅之光學特性研究, 東華大學材料科學與工程研究所碩士論文, 民國95年
[27] 林志雄, 使用反應濺鍍法於塑膠基板上製鍍抗反射膜之研究, 中央大學光電科學與工程學系碩士論文, 民國97 年
[28] P. J. Jesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching”J. Electronchem. Soc., Vol. 140. No. 4, pp. 1080-1084, 1993.
[29] D. L. Kendall, “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, 1975.
[30] U. Gangopadhyay, K. Kim, S. K. Dhungel, P. K. Basu, J. Yi,“Low-cost texturization of large-area crystalline silicon solar cells using hydrazine mono-hydrate for industrial use”, Renewable Energy, Vol.31, pp. 1906-1915, 2006.
[31] A. Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao, A Wang,“Angle-dependent reflectance measurements on photovoltaic materials and solar cells”, optics communicatons, Vol.172, pp. 139-151, 1999.
[32] Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen, “Bulk Micromachining of Silicon”, Proceedings of the IEEE, Vol. 86, No. 8, August, pp.1536-1551, 1998.
[33] M. Elwenspoek, “The form of etch rate minima in wet chemical anisotropic etching of silicon”, Journal of Micromechanical and Microengineering, Vol. 6, pp.405-409, 1996.
[34] Asuha, S. S. Im, M. Tanaka, S. Imai, M. Takahashi, and H. Kobayashi, “Formation of 10-30 nm SiO2/Si structure with a uniform thickness at ~120℃ by nitric acid oxidation method,” Surf. Sci., vol. 600, pp. 2523-2527, 2006.
[35] Asuha, T. Kobayashi, M. Takahashi, H. Iwasa, H. Kobayashi, “Spectroscopic and Electrical Properties of Ultrathin SiO2 Layers Formed with Nitric Acid,” Surface Science, vol. 547, pp.275-283, 2003.
[36] Asuha, Y. L. Liu, O. Maida, M. Takahashi, and H. Kobayashi, “Postoxidation Annealing Treatments to Improve Si/Ultrathin SiO2 Characteristics Formed by Nitric Acid Oxidation,”J. Electrochem.Soc., vol. 151, no.12, pp. G824-G828, 2004.
[37] http://www.aandb.com.tw/Page0004/uv_vis_04_lambda_35.html
[38] http://en.wikipedia.org/wiki/Spreading_Resistance_Profiling
[39] Dieter K. Schroder, and Daniel L. Meier, “Solar Cell Contact Resistance-A Review,”Transaction on Electron Devices, vol. ED-31, no. 5, pp. 637-647, 1984.