研究生: |
陳佩蓉 Chen, Pei-Rong |
---|---|
論文名稱: |
數據分析如何實現精準行銷? -以T公司為例 How Does Data-Driven Analysis Achieve Precision Marketing? - A Case Study of T Company |
指導教授: |
張元杰
Chang, Yuan-Chieh |
口試委員: |
謝英哲
Hsieh, Ying-Che 張公一 Zhang, Gong-Yi 黃瓊誼 Hwang, Chiung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 精準行銷 、RFM模型 、集群分析 、資料探勘 |
外文關鍵詞: | precision marketing, RFM model, cluster analysis, data mining |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討數據分析如何實現精準行銷,對企業而言,蒐集客戶數據的能力已不再是問題,然而,大多數企業仍無法善用這些累積的數據,進而挖掘顧客的需求。過去研究已經證實,透過數據分析,能夠從消費者的購買行為獲取顧客偏好,使行銷更有效率,並提升企業的表現。本研究採用RFM(近度,頻率,消費金額)模型作為顧客價值分析方法,蒐集T公司在2018年間的顧客消費紀錄,共有8090筆交易資料與4192會員。研究結果顯示,RFM模型能有效將會員依據其消費特徵,聚集成五個不同的集群,進一步的訪談結果也得出消費者的真正需求。本研究的結論是,RFM模型能對顧客進行詳細分類,進一步的訪談結果能了解消費者在特徵表現上的差異,有助於精準行銷的實現。
This study aims to investigate that how data-driven analysis achieves precision marketing. The capability of collecting customer data is no longer a problem to firms, however, most of firms are not able to make the best of the accumulated data to dig out customers’ needs. Previous studies have proven that data-driven marketing is an efficient way to capture the customers’ preferences from purchasing behaviors, resulting in increasing firms’ performances. By adopting RFM (recency, frequency, monetary) model as an effective means of customer value analysis, this study collects 8,090 transaction data and 4,192 members of T Company in 2018. The results show that the RFM model clusters members into five various clusters with specific characteristics of customers’ needs which aligned with the results of interviews. This study concludes that RFM model is useful to classify customers in detail and further interviews are helpful to achieve precision marketing. The managerial implications for achieving precision marketing are suggested.
Anderberg, M. R. (2014). Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks (Vol. 19): Academic press.
Blattberg, R. C., & Deighton, J. J. (1991). Interactive marketing: exploiting the age of addressability. Sloan Management Review, 33(1), 5-15.
Bughin, J., Chui, M., & Manyika, J. J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75-86.
Bult, J. R., & Wansbeek, T. (1995). Optimal selection for direct mail. Marketing Science, 14(4), 378-394.
Chang, Y. C., & Chen, M. N. (2016). Service regime and innovation clusters: An empirical study from service firms in Taiwan. Research Policy, 45(9), 1845-1857.
Cheng, C. H., & Chen, Y. S. J. (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert Systems with Applications, 36(3), 4176-4184.
Colombo, R., & Jiang, W. J. (1999). A stochastic RFM model. Journal of Interactive Marketing, 13(3), 2-12.
Davenport, T. H., Harris, J. G., De Long, D. W., & Jacobson, A. L. J. (2001). Data to knowledge to results: building an analytic capability. California Management Review, 43(2), 117-138.
Davenport, T. H., Harris, J. G., & Kohli, A. K. J. (2001). How do they know their customers so well? MIT Sloan Management Review, 42(2), 45-60.
Desarbo, W. S., Jedidi, K., & Sinha, I. (2001). Customer value analysis in a heterogeneous market. Strategic Management Journal, 22(9), 845-857.
Dolnicar, S. J. (2002). A review of data-driven market segmentation in tourism. Journal of Travel Tourism Marketing, 12(1), 1-22.
Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904.
Hair, J., Anderson, R. E., Tatham, R. L., & Black, W. (1992). Multivariate Data Analysis Macmillan. New York, 47-82.
Han, J., & Kamber, M. (2001). Data mining concepts and techniques San Francisco Moraga Kaufman.
Hofacker, C. F., Malthouse, E. C., & Sultan, F. (2016). Big data and consumer behavior: Imminent opportunities. Journal of Consumer Marketing, 33(2), 89-97.
Humby, C., Hunt, T., & Phillips, T. (2003). Scoring points: How Tesco is winning customer loyalty. UK: Palgrave Macmillan.
Jeffery, M. (2010). Data-driven marketing: the 15 metrics everyone in marketing should know. US: John Wiley & Sons.
Kaymak, U. (2001, July). Fuzzy target selection using RFM variables. In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)(Vol. 2, pp. 1038-1043). IEEE.
Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17(6), 441-458.
Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63.
Kim, S.Y., Jung, T.S., Suh, E.H., & Hwang, H.S. (2006). Customer segmentation and strategy development based on customer lifetime value: A case study. Expert Systems with Applications, 31(1), 101-107.
Kotler, P. (1994). Reconceptualizing marketing: an interview with Philip Kotler. European Management Journal, 12(4), 353-361.
Kumar, V., Chattaraman, V., Neghina, C., Skiera, B., Aksoy, L., Buoye, A., & Henseler, J. (2013). Data-driven services marketing in a connected world. Journal of Service Management, 24(3), 330-352.
Lemon, K. N., White, T. B., & Winer, R. S. (2002). Dynamic customer relationship management: Incorporating future considerations into the service retention decision. Journal of Marketing, 66(1), 1-14.
Luo, F. L., & Li, S. (2014). Precision Marketing and Modern Information Technology. In Applied Mechanics and Materials(Vol. 687, pp. 4683-4686). Trans Tech Publications.
MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability(Vol. 1, No. 14, pp. 281-297).
Mesforoush, A., & Tarokh, M. J. (2013). Customer profitability segmentation for SMEs case study: network equipment company. International Journal of Research in Industrial Engineering, 2(1), 30-44.
Milligan, G. W. J. P. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. 45(3), 325-342.
Newell, F. (1997). The new rules of marketing: How to use one-to-one relationship marketing to be the leader in your industry. US: Irwin Professional Publishing.
Peppard, J. (2000). Customer relationship management (CRM) in financial services. European Management Journal, 18(3), 312-327.Porter, M. E. (1985). Competitive Advantage The Free Press. New York, 33-61.
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134-148.
Rizzi, J. (2001). Precision e-mail marketing. Direct Marketing, 64(7), 56-60.
Rogers, D., & Sexton, D. (2012). Marketing ROI in the Era of Big Data. The 2012 BRITENYAMA Marketing in Transition Study.
Rossi, P. E., McCulloch, R. E., & Allenby, G. M. (1996). The value of purchase history data in target marketing. Marketing Science, 15(4), 321-340.
Schijns, J. M., & Schröder, G. J. (1996). Segment selection by relationship strength. Journal of Direct Marketing, 10(3), 69-79.
Slater, S. F., & Narver, J. C. (1998). Customer‐led and market‐oriented: let's not confuse the two. Strategic Management Journal, 19(10), 1001-1006.
Sun, N., Morris, J. G., Xu, J., Zhu, X., & Xie, M. (2014). iCARE: A framework for big data-based banking customer analytics. IBM Journal of Research and Development, 58(5/6), 4-1.
Verhoef, P. C., Venkatesan, R., McAlister, L., Malthouse, E. C., Krafft, M., & Ganesan, S. (2010). CRM in data-rich multichannel retailing environments: a review and future research directions. Journal of Interactive Marketing, 24(2), 121-137.
Weatherall, M., Travers, J., Shirtcliffe, P. M., Marsh, S. E., Williams, M. V., Nowitz, M. R., ... & Beasley, R. (2009). Distinct clinical phenotypes of airways disease defined by cluster analysis. European Respiratory Journal, 34(4), 812-818.
Wedel, M., & Kannan, P. K. (2016). Marketing analytics for data-rich environments. Journal of Marketing, 80(6), 97-121.
Wei, J. T., Lee, M. C., Chen, H. K., & Wu, H. H. (2013). Customer relationship management in the hairdressing industry: An application of data mining techniques. Expert Systems with Applications, 40(18), 7513-7518.
Wu, C., & Chen, H. L. (2000). Counting your customers: Compounding customer’s in-store decisions, interpurchase time and repurchasing behavior. European Journal of Operational Research, 127(1), 109-119.
You, Z., Si, Y. W., Zhang, D., Zeng, X., Leung, S. C., & Li, T. (2015). A decision-making framework for precision marketing. Expert Systems with Applications, 42(7), 3357-3367.
Zabin, J., & Brebach, G. (2004). Precision marketing: The new rules for attracting, retaining, and leveraging profitable customers. US: John Wiley & Sons.
Zhang, J., & Zhu, J. (2014). Research intelligent precision marketing of e-commerce based on the big data. Journal of Management and Strategy, 5(1), 33.