簡易檢索 / 詳目顯示

研究生: 宋雲傑
Yun-Chieh Sung
論文名稱: 開發包覆一氧化氮供體之高分子奈米載體於肝癌治療之應用
Development of Dinitrosyl Iron Complexes-loaded PLGA Nanoparticles for the Treatment of Liver Cancer
指導教授: 陳韻晶
Yunching Chen
口試委員: 王潔
魯才德
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 55
中文關鍵詞: 一氧化氮肝癌蕾莎瓦
外文關鍵詞: Nitric oxide, Liver cancer, Sorafenib
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一氧化氮 (Nitric oxide,NO) 為一已知的生物信號分子,在生物體中擁有許多功能,可以藉由生物體內之一氧化氮合成酶 (Nitric oxide synthases) 進行合成,根據先前的研究,NO同時因其自由基的特性而能造成細胞相當的毒性,並與血管新生 (angiogenesis) 息息相關,進而具有作為抗癌分子之能力。由於NO為氣態分子,需藉由其他化合物的輔助,方能進行傳遞,市面上既有之一氧化氮供體 (NO donor) 分子均有半衰期短的問題,難以應用於臨床治療。本篇研究中,利用以鐵離子為核心之NO donor,即雙亞硝基鐵錯合物 (dinitrosyl iron complexes,簡稱為DNIC),其分子擁有較高之穩定性及較緩慢NO釋放速率。為了能在生物體內更加有效率的傳遞NO,我們利用聚乳酸聚乙醇酸 (PLGA) 將此化合物包覆形成奈米粒子,再將其外圍包覆多種脂質 (lipid),增加體內循環之穩定性。
    蕾莎瓦 (Sorafenib) 為目前臨床肝癌唯一用藥,但本身狹窄的治療窗口和較差的藥物動力學限制其在臨床上的應用以及治療功效,本研究進一步以NO為輔劑結合sorafenib,針對肝癌進行複合性治療,為了更加有效率並專一的傳遞這兩種化合物,我們利用PLGA同時包覆兩化合物,並包裹多種lipid,且修飾SP94肝癌標靶胜肽增加靶向性,在體外測試 (in vitro) 中,觀察到NO可敏化 (sensitize) 肝癌細胞對Sorafenib的反應,進而達到加乘的毒殺效果,並利用西方點墨法,觀察細胞內Akt蛋白質磷酸化的變化,以及下游mTor相關蛋白之改變,研究藥物影響之生化機制,冀望因此解決雷沙瓦所遇到之治療困境,進而增加治療效率。


    Sorafenib is a multikinase inhibitor approved for several cancers, including hepatocellular carcinoma (HCC). Sorafenib is also used as anti-agiogenesis therapy in many study. However, sorafenib still faces several problems such as poor pharmacokinetics and resistance mechamism. Due to limited efficacy of Sorafenib, we introduced an adjuvant to overcome the ressistant mechanisms and thus synergistically elevate the therapeutic effect.
    Nitric oxide (NO) is a well-known endogenous signaling molecule. NO could regulate many biological functionl, including agiogenesis, proliferation, apopoptosis and immune responses. According to the previous study, NO is also a highly reactive molecule which has potential to serve as an anti-cancer drug. In this study, we used dinitrosyl iron complexes (SEt) as a NO donor to deliver NO into the cancer cells. We successfully inhibited the liver cancer cell growth by treatment of combined SEt and sorafenib in vitro. The protein expression of pAkt was also down-regulated by the combication treatment. Futhermore, we developed a tumor-targeted PLGA nanoparticles to co-deliver SEt and sorafneib into hepatocellular carcinoma (HCC). We showed the nanoscale combination therapy could efficiently inhibit the tumor growth in vivo.

    中文摘要 I Abstract II 致謝 III 圖目錄 VI 縮寫目錄 VII 第一章、文獻回顧 1 1.1 肝癌及其治療方法 1 1.2 抗血管新生用藥雷莎瓦其機制與困境 2 1.3 一氧化氮 (nitic oxide) 與細胞之影響 3 1.4 誘導型一氧化氮合成酶 (nitic oxide synthase) 與癌症 4 1.5 一氧化氮供體 (nitic oxide donor) 之發展 5 1.6 奈米載體 (nanocarrier) 之應用 6 1.7 研究目標 8 第二章、材料與方法 9 2.1 實驗細胞與材料 9 2.2 實驗動物與原位肝腫瘤模型建立 9 2.3 製備SEt PLGA奈米粒子(SEt NP) 10 2.4 製備靶向SP94胜肽之脂質包覆Sorafenib結合DNIC化合物 SEt PLGA奈米粒子 (SP94 SS NP) 10 2.5 藥物包覆率 11 2.6 細胞受體競爭實驗(competition assay) 12 2.7 細胞吞噬實驗 (cellular uptake) 12 2.8 細胞存活率分析 13 2.9 生物分布(biodistribution)實驗分析 13 2.10 生物分布 (biodistribution) 血清樣本分析 13 2.11 動物治療研究 14 2.12 西方點墨法分析 (Western blot analysis) 14 2.13 統計資料 15 第三章、實驗結果 16 3.1包覆DNIC化合物SEt奈米粒子對肝腫瘤治療之潛力 16 3.1.1 DNIC化合物SEt奈米粒子於體外 (in vitro) 細胞毒性測試 16 3.1.2 包覆SEt之PLGA奈米粒子之生物分布 17 3.1.3 包覆SEt之PLGA奈米粒子之腫瘤治療 18 3.2.1 Sorafenib結合DNIC化合物SEt於體外 (in vitro) 細胞毒性測試與西方點墨法分析Akt生化途徑磷酸化之變化 19 3.2.2 靶向SP94胜肽之脂質包覆Sorafenib結合DNIC化合物 SEt PLGA奈米粒子in vitro配體競爭及細胞吞噬測試 20 3.2.3 靶向SP94胜肽之脂質包覆sorafenib與DNIC化合物SEt之PLGA奈米粒子in vitro細胞毒性測試與西方點墨法分析Akt生化途徑磷酸化變化 21 3.2.4 靶向SP94胜肽之脂質包覆sorafenib與DNIC化合物SEt之PLGA奈米粒子於小鼠肝腫瘤模型治療效果 22 3.3 利用不同之包覆DNIC化合物SEt之PLGA奈米粒子應用於肝癌抗血管新生療法 23 第四章、實驗討論 24 第五章、結論 26 第六章、圖表 27 第七章、參考文獻 43

    1. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
    2. Bosch, F.X., J. Ribes, and J. Borràs. Epidemiology of primary liver cancer. in Seminars in liver disease. 1999. © 1999 by Thieme Medical Publishers, Inc.
    3. Okuda, K., Primary liver cancer. Quadrennial review lecture. Digestive diseases and sciences, 1986. 31(9 Suppl): p. 133S-146S.
    4. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine, 2008. 359(4): p. 378-390.
    5. Semela, D. and J.F. Dufour, Angiogenesis and hepatocellular carcinoma. J Hepatol, 2004. 41(5): p. 864-80.
    6. Fernández, M., et al., Angiogenesis in liver disease. Journal of Hepatology, 2009. 50(3): p. 604-620.
    7. Keating, G. and A. Santoro, Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs, 2009. 69(2): p. 223.
    8. Ullrich, A. and J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity. Cell, 1990. 61(2): p. 203-212.
    9. Hasskarl, J., Sorafenib: targeting multiple tyrosine kinases in cancer, in Small Molecules in Oncology. 2014, Springer. p. 145-164.
    10. Zhai, B. and X.-Y. Sun, Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol, 2013. 5(7): p. 345-52.
    11. Cheng, A.-L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The lancet oncology, 2009. 10(1): p. 25-34.
    12. Fukumura, D., S. Kashiwagi, and R.K. Jain, The role of nitric oxide in tumour progression. Nat Rev Cancer, 2006. 6(7): p. 521-34.
    13. Kim, J., et al., A platform for nitric oxide delivery. J. Mater. Chem. B, 2014. 2(4): p. 341-356.
    14. Wink, D.A., et al., Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide, 1997. 1(1): p. 88-94.
    15. Müerköster, S., et al., Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1β. Cancer research, 2004. 64(4): p. 1331-1337.
    16. Vannini, F., K. Kashfi, and N. Nath, The dual role of iNOS in cancer. Redox Biol, 2015. 6: p. 334-43.
    17. Shen, J., et al., A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer. World journal of gastroenterology, 2004. 10(22): p. 3278-3283.
    18. Nathan, C., Nitric oxide as a secretory product of mammalian cells. The FASEB journal, 1992. 6(12): p. 3051-3064.
    19. Granados-Principal, S., et al., Inhibition of iNOS as a novel effective targeted therapy against triple-negative breast cancer. Breast Cancer Research, 2015. 17(1): p. 1.
    20. Wang, P.G., et al., Nitric oxide donors: chemical activities and biological applications. Chemical Reviews, 2002. 102(4): p. 1091-1134.
    21. Duong, H.T., et al., The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension. Small, 2015. 11(19): p. 2291-304.
    22. Vanin, A.F., Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric Oxide, 2009. 21(1): p. 1-13.
    23. Mura, S., J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nature materials, 2013. 12(11): p. 991-1003.
    24. Wang, C.-F., et al., Copper-free azide–alkyne cycloaddition of targeting peptides to porous silicon nanoparticles for intracellular drug uptake. Biomaterials, 2014. 35(4): p. 1257-1266.
    25. Thapa, R.K., et al., Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma. ACS applied materials & interfaces, 2015. 7(36): p. 20360-20368.
    26. Wang, X.-Q. and Q. Zhang, pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2012. 82(2): p. 219-229.
    27. Liu, J., et al., Comparison of Sorafenib‐Loaded Poly (Lactic/Glycolic) Acid and DPPC Liposome Nanoparticles in the in Vitro Treatment of Renal Cell Carcinoma. Journal of pharmaceutical sciences, 2015. 104(3): p. 1187-1196.
    28. Kaul, S., et al., Polymeric-based perivascular delivery of a nitric oxide donor inhibits intimal thickening after balloon denudation arterial injury: role of nuclear factor-kappaB1. Journal of the American College of Cardiology, 2000. 35(2): p. 493-501.
    29. Lee, S.Y., et al., A novel liposomal nanomedicine for nitric oxide delivery and breast cancer treatment. Bio-medical materials and engineering, 2014. 24(1): p. 61-67.
    30. Gomes, A.J., E.M. Espreafico, and E. Tfouni, trans-[Ru (NO) Cl (cyclam)](PF6) 2 and [Ru (NO)(Hedta)] Incorporated in PLGA Nanoparticles for the Delivery of Nitric Oxide to B16–F10 Cells: Cytotoxicity and Phototoxicity. Molecular pharmaceutics, 2013. 10(10): p. 3544-3554.
    31. 拜爾集團(Bayer).Nexavar(蕾莎瓦)之作機制. http://www.nexavar.com/home/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE