研究生: |
楊錫明 Yang, Hsi-Ming |
---|---|
論文名稱: |
鮑魚珍珠層之仿生啟發: 以濺鍍與脈衝雷射蒸鍍複合技術合成氧化鋯/聚醯亞胺多層膜之微結構分析與機械性質研究 Bio-inspirations from Abalone Nacre: Microstructural Characterization and Mechanical Evaluation of ZrO2/PI Multilayer Coatings Synthesized by a Hybrid Sputtering and Pulsed Laser Deposition Technique |
指導教授: |
陳柏宇
Chen, Po-Yu |
口試委員: |
杜正恭
Jenq-Gong Duh 李志偉 Jyh-Wei Lee |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 仿生 、反應式磁控濺鍍 、脈衝雷射沉積 、多層薄膜 、複合材料 、機械性質 、破裂韌性 |
外文關鍵詞: | bio-inspiration, reactive sputtering, pulsed laser deposition, multilayer film, composites, mechanical properties, fracture toughness |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鮑魚珍珠層是一種有機無機混成的天然複合材料,有95%以上是由碳酸鈣組成以及少量的生物高分子,具有高強度及高破裂韌性。碳酸鈣本身具有高硬度但破裂韌性低,而其韌性強度主要歸功於特殊的多層結構。當鮑魚殼受到外力作用時,由於多層結構的關係,裂縫並不會一次性的破裂,而會被層狀結構偏折甚至阻擋。此外,層狀微結構間的粗糙界面使其受外力作用時不易產生形變。有鑑於此,本研究利用磁控濺鍍以及脈衝雷射沉積來合成仿鮑魚珍珠層結構的有機及無機複合材料之高韌性多層薄膜,所選用的材料為氧化鋯以及聚醯亞胺。氧化鋯本身具有不俗的破裂韌性,在引入有機的聚醯亞胺界面後,其破裂韌性相較於氧化鋯單層模獲得六倍的大幅的提升。氧化鋯以及聚醯亞胺的厚度比固定為十比一,並改變其週期厚度來探討機械性質的改變,如硬度及破裂韌性。本研究內容指出,多層膜的結構能夠使薄膜的破裂韌性提升;多層膜的層數會與薄膜的機械性質有關,層數越多韌性越佳,相對地硬度會下降。由電子顯微鏡的觀察驗證仿生多層膜之韌化機制主要為有機層與無機層界面造成裂縫偏折,無法直接斷裂。多層膜的介面粗糙度是另一影響機械性質的因素,在提升介面粗糙度之後,某些情況下薄膜的硬度與破裂韌性會有所提升,其機制於本研究深入地分析討論。
Abalone nacre is a natural ceramic-based composite consists of 95 wt% stacked CaCO3 tiles and 5 wt% organic layers organized into a unique multilayer structure, which leads to exceptional fracture toughness. The major toughening mechanism is the crack deflection at the organic/inorganic interfaces so that the crack cannot propagate through the shell directly. Furthermore, interfacial roughness and interconnected mineral bridges between tiles can further prevent plastic deformation. Inspired from abalone nacre, multilayer films of zirconia and polyimide layers are synthesized by the hybrid PVD system combining sputtering and pulsed laser deposition. Zirconia is an intrinsically tough ceramic material. By introducing the polyimide interlayer, the fracture toughness of multilayer films can be significantly enhanced, six times higher than that of zirconia monolayer. The thickness ratio of zirconia and polyimide is kept 10:1, and the period thickness is altered to investigate effect the interfaces on the mechanical properties. Results show that multilayer structure can enhance the fracture toughness of thin film: fracture toughness increases with increasing number of interlayers yet the hardness decreases. SEM observation verifies that the major toughening mechanism of bio-inspired multilayer films is crack deflection at organic/inorganic interfaces, which prevent crack from direct propagation. The interfacial roughness can also enhance mechanical properties in certain situations and the mechanisms are discussed.
[1] P.-Y. Chen, J. McKittrick, and M. A. Meyers, “Biological materials: Functional adaptations and bioinspired designs,” Prog. Mater. Sci., vol. 57, no. 8, pp. 1492–1704, Nov. 2012.
[2] M. A. Meyers, J. McKittrick, and P.-Y. Chen, “Structural biological materials: critical mechanics-materials connections.,” Science, vol. 339, no. 6121, pp. 773–9, Feb. 2013.
[3] J. Shigley, C. Mischke, and T. Brown, “Standard Handbook of Machine Design.” McGraw-Hill, 2004.
[4] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, “Biological materials: Structure and mechanical properties,” Prog. Mater. Sci., vol. 53, no. 1, pp. 1–206, Jan. 2008.
[5] P. Fratzl, “Biomimetic materials research: what can we really learn from nature’s structural materials,” J. R. Soc. Interface, vol. 4, no. 15, pp. 637–42, Aug. 2007.
[6] H. M. F. MD, “Wolff’s Law and bone's structural adaptations to mechanical usage: an overview for clinicians,” The Angle Orthodbtist, vol. 64, no. 3, pp. 175–188, 1994.
[7] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, “The Mechanical Design of Nacre,” Proc. R. Soc. B Biol. Sci., vol. 234, no. 1277, pp. 415–440, Sep. 1988.
[8] R. Wang, Z. Suo, A. G. Evans, N. Yao, and I. Aksay, “Deformation mechanisms in nacre,” J. Mater. Res, vol. 16, no. 9, pp. 2485–2493, 2001.
[9] X. Li, W.-C. Chang, Y. J. Chao, R. Wang, and M. Chang, “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett., vol. 4, no. 4, pp. 613–617, Apr. 2004.
[10] F. Barthelat, H. Tang, P. Zavattieri, C. Li, and H. Espinosa, “On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure,” J. Mech. Phys. Solids, vol. 55, no. 2, pp. 306–337, Feb. 2007.
[11] M. A. Meyers, A. Y.-M. Lin, P.-Y. Chen, and J. Muyco, “Mechanical strength of abalone nacre: role of the soft organic layer.,” J. Mech. Behav. Biomed. Mater., vol. 1, no. 1, pp. 76–85, Jan. 2008.
[12] H. D. Espinosa, A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire, and P. D. Zavattieri, “Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.,” Nat. Commun., vol. 2, no. 2:173, Jan. 2011.
[13] J. Sun and B. Bhushan, “Hierarchical structure and mechanical properties of nacre: a review,” RSC Adv., vol. 2, no. 20, pp. 7617–7632, 2012.
[14] R. Menig, M. H. Meyers, M. a. Meyers, and K. S. Vecchio, “Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells,” Acta Mater., vol. 48, no. 9, pp. 2383–2398, May 2000.
[15] A. P. Jackson, J. F. V. Vincent, and R. M. Turner, “Comparison of nacre with other ceramic composites,” J. Mater. Sci., vol. 25, pp. 3173–3178, 1990.
[16] B. Zhang, H.-F. Tan, J.-W. Yan, M.-D. Zhang, X.-D. Sun, and G.-P. Zhang, “Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites.,” Nanoscale Res. Lett., vol. 8:44, Jan. 2013.
[17] Z. Burghard, L. Zini, V. Srot, P. Bellina, P. a Van Aken, and J. Bill, “Toughening through nature-adapted nanoscale design.,” Nano Lett., vol. 9, no. 12, pp. 4103–4108, Dec. 2009.
[18] M. Ohring, Materials Science of Thin Films, 2nd ed. Elsevier Science, 2001.
[19] L. C. F. K.N. Tu, J.W. Mayer, Electronic Thin Film Science—for Electrical Engineers and Materials Scientists. NewYork: Macmillan, 1992.
[20] M. Ohring, Materials Science of Thin Films. .
[21] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications,” Thin Solid Films, vol. 513, no. 1–24, Aug. 2006.
[22] J. Musil, P. Baroch, J. Vlček, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: present status and trends,” Thin Solid Films, vol. 475, pp. 208–218, Mar. 2005.
[23] W. D. Sproul, D. J. Christie, and D. C. Carter, “Control of reactive sputtering processes,” Thin Solid Films, vol. 491, pp. 1–17, Nov. 2005.
[24] H. Biederman, “RF sputtering of polymers and its potential application,” Vacuum, vol. 59, pp. 594–599, Nov. 2000.
[25] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surf. Coatings Technol., vol. 204, pp. 1661–1684, Feb. 2010.
[26] D. Ochs, “HIPIMS Power for Improved Thin Film Coatings,” Vak. Forsch. und Prax., vol. 20, no. 4, pp. 34–38, Aug. 2008.
[27] J. Alami, S. Bolz, and K. Sarakinos, “High power pulsed magnetron sputtering: Fundamentals and applications,” J. Alloys Compd., vol. 483, pp. 530–534, Aug. 2009.
[28] M. Samuelsson, D. Lundin, K. Sarakinos, F. Björefors, B. Wälivaara, H. Ljungcrantz, and U. Helmersson, “Influence of ionization degree on film properties when using high power impulse magnetron sputtering,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 3, pp. 031507–1 – 03107–5, 2012.
[29] N. Adachi, V. P. Denysenkov, S. I. Khartsev, A. M. Grishin, and T. Okuda, “Epitaxial Bi3Fe5O12 (001) films grown by pulsed laser deposition and reactive ion beam sputtering techniques,” J. Appl. Phys., vol. 88, no. 5, pp. 2734–2739, 2000.
[30] L. W. Martin, Y.-H. Chu, and R. Ramesh, “Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films,” Mater. Sci. Eng. R Reports, vol. 68, pp. 89–133, May 2010.
[31] M. Rubin, S.-J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack, “Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering,” Sol. Energy Mater. Sol. Cells, vol. 54, pp. 59–66, Jul. 1998.
[32] B. Roast, L. Schultz, and G. Endres, “Superconducting properties of laser evaporated expotaxial Y-Ba-Cu-O thin film,” J. Less-Common Met., vol. 151, pp. 413–418, 1989.
[33] S. B. Ogale, D. Dijkkamp, T. Venkatesan, X. D. Wu, and A. Inam, “Current transport in high-Tc polycrystalline film of Y-Ba-Cu-O,” Phys. Rev. B, vol. 36, no. 13, pp. 7210–7213, 1987.
[34] R. Eason, Pulsed laser deposition of thin films. Wiley-Interscience, 2007.
[35] V. Nelea, C. Morosanu, M. Iliescu, and I. N. Mihailescu, “Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study,” Appl. Surf. Sci., vol. 228, pp. 346–356, Apr. 2004.
[36] Y. Tsuboi, M. Goto, and A. Itaya, “Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films,” J. Appl. Phys., vol. 89, no. 12, pp. 7917–7924, 2001.
[37] L. Stamatin, R. Cristescu, G. Socol, A. Moldovan, D. Mihaiescu, I. Stamatin, I. N. Mihailescu, and D. B. Chrisey, “Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation,” Appl. Surf. Sci., vol. 248, pp. 422–427, Jul. 2005.
[38] D. B. Chrisey, a Piqué, R. a McGill, J. S. Horwitz, B. R. Ringeisen, D. M. Bubb, and P. K. Wu, “Laser deposition of polymer and biomaterial films.,” Chem. Rev., vol. 103, no. 2, pp. 553–76, Feb. 2003.
[39] A. Pique, P. Wu, B. R. Ringeisen, D. M. Bubb, J. S. Melinger, R. A. Mcgill, and D. B. Chrisey, “Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique,” Appl. Surf. Sci., vol. 186, pp. 408–415, 2002.
[40] B. Ringeisen, J. Callahan, P. Wu, and A. Pique, “Novel laser-based deposition of active protein thin films,” Langmuir, no. 17, pp. 3472–3479, 2001.
[41] S. T. Li, E. Arenholz, J. Heitz, and D. Buuerle, “Pulsed-laser deposition of crystalline Teflon ( PTFE ) films,” Appl. Surf. Sci., vol. 125, no. 1, pp. 17–22, 1998.
[42] A. A. Voevodin and M. S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review,” Surf. Coatings Technol., vol. 82, no. 3, pp. 199–213, Aug. 1996.
[43] A. A. Voevodin, M. S. Donley, and J. S. Zabinski, “Pulsed laser deposition of diamond-like carbon wear protective coatings : a review,” Surf. Coatings Technol., vol. 92, pp. 42–49, 1997.
[44] E. L. Tobolski, W. I. Division, I. Corporation, A. Fee, and R. Scales, “Macroindentation Hardness Testing,” in ASM Handbook, 2000, pp. 203–211.
[45] A. C. Fischer-Cripps, Nanoindentation, Third. Springer, 2011.
[46] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, P. Nesladek, G. Dollinger, and A. Bergmaier, “Composition , nanostructure and origin of the ultrahardness in nc-TiN r a-Si 3 N 4 r a- and nc-TiSi 2 nanocomposites with H V s 80 to G 105 GPa,” Surf. Coatings Technol., vol. 133–134, pp. 152–159, 2000.
[47] H. Holleck and V. Schier, “Multilayer PVD coatings for wear protection TiC / TiB2 r,” Surf. Coatings Technol. Coatings Technol., vol. 76–77, pp. 328–336, 1995.
[48] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coatings Technol., vol. 167, pp. 113–119, Apr. 2003.
[49] K. Ma, A. Bloyce, R. A. Andrievski, and G. V. Kalinnikov, “Microstructural response of mono- and multilayer hard coatings during indentation microhardness testing,” Surf. Coatings Technol., vol. 94–95, pp. 322–327, 1997.
[50] P. Mayrhofer and C. Mitterer, “Microstructural design of hard coatings,” Prog. Mater. Sci., vol. 51, pp. 1032–1114, Nov. 2006.
[51] J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 125, pp. 322–330, Mar. 2000.
[52] J. A. Dobrowolski, “OPTICAL PROPERTIES OF FILMS AND COATINGS,” in From Handbook of Optics: Fundamentals, Techniques, and Design,, Second., McGraw-Hill, 1994.
[53] B. M. Clemens, H. Kung, and S. A. Barnett, “Structure and strength of multilayers,” MRS Bull., pp. 20–26, 1999.
[54] D. Wang, Y. Ni, Q. Huo, and D. E. Tallman, “Self-assembled monolayer and multilayer thin films on aluminum 2024-T3 substrates and their corrosion resistance study,” Thin Solid Films, vol. 471, pp. 177–185, Jan. 2005.
[55] T. Farhat and J. Schlenoff, “Corrosion control using polyelectrolyte multilayers,” Electrochem. solid-state Lett., vol. 5, no. 4, pp. B13–B15, 2002.
[56] R. Hübler, A. Schröer, W. Ensinger, G. K. Wolf, W. H. Schreiner, and I. J. R. Baumvol, “Plasma and ion-beam-assisted deposition of multilayers for tribological and corrosion protection,” Surf. Coatings Technol., vol. 60, pp. 561–565, Oct. 1993.
[57] H. Macleod, Thin-film optical filters. 2001.
[58] E. Hecht, Optics, 4 edition. Addison-Wesley, 2001.
[59] M. Ylilammi and T. Ranta-aho, “Optical determination of the film thicknesses in multilayer thin film structures,” Thin Solid Films, vol. 232, pp. 56–62, Sep. 1993.
[60] G. E. Dieter, Mechanical Metallurgy. McGraw-Hill, 1976.
[61] R. Hübler, A. Cozza, and T. Marcondes, “Wear and corrosion protection of 316-L femoral implants by deposition of thin films,” Surf. Coatings Technol., vol. 142–144, pp. 1078–1083, 2001.
[62] R. Hübler, “Characterisation of gradient interfaces in thin film multilayers used to protect orthopaedic implants,” Surf. Coatings Technol., vol. 116–119, pp. 1116–1122, Sep. 1999.
[63] U. Wiklund, P. Hedenqvist, and S. Hogmark, “Multilayer cracking resistance in bending,” Surf. Coatings Technol., vol. 97, pp. 773–778, Dec. 1997.
[64] D. K. Leung, M. Y. He, and A. G. Evans, “The cracking resistance of nanoscale layers and films,” J. Mater. Res., vol. 10, no. 07, pp. 1693–1699, Mar. 1995.
[65] American Society for Testing and Materials, “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness K Ic of Metallic Materials,” pp. 1–33, 2013.
[66] S. Zhang and X. Zhang, “Toughness evaluation of hard coatings and thin films,” Thin Solid Films, vol. 520, pp. 2375–2389, Jan. 2012.
[67] G. Jaeger, I. Endler, M. Heilmaier, K. Bartsch, and a Leonhardt, “A new method of determining strength and fracture toughness of thin hard coatings,” Thin Solid Films, vol. 377–378, pp. 382–388, Dec. 2000.
[68] Z. Jiang, F. . Lu, W. . Tang, S. . Wang, Y. . Tong, T. . Huang, and J. . Liu, “Accurate measurement of fracture toughness of free standing diamond films by three-point bending tests with sharp pre-cracked specimens,” Diam. Relat. Mater., vol. 9, pp. 1734–1738, Sep. 2000.
[69] X. Li, D. Diaot, and B. Bhushans, “FRACTURE MECHANISMS OF THIN AMORPHOUS CARBON FILMS IN NANOINDENTATION,” Acta Mater., vol. 45, no. 11, pp. 4453–4461, 1997.
[70] X. Zhang and S. Zhang, “Rethinking the role that the ‘step’ in the load–displacement curves can play in measurement of fracture toughness for hard coatings,” Thin Solid Films, vol. 520, pp. 3423–3428, Feb. 2012.
[71] G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Mater. Sci. Eng. A, vol. A253, pp. 151–159, Sep. 1998.
[72] Z. Xia, W. A. Curtin, and B. W. Sheldon, “A new method to evaluate the fracture toughness of thin films,” Acta Mater., vol. 52, pp. 3507–3517, 2004.
[73] S. Sundararajan and B. Bhushan, “Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultrathin hard amorphous carbon coatings,” J. Mater. Res., vol. 16, no. 02, pp. 437–445, Jan. 2011.
[74] A. A. Voevodin and J. S. Zabinski, “Supertough wear-resistant coatings with ` chameleon ’ surface adaptation,” vol. 370, pp. 223–231, 2000.
[75] H. Huang, W. W. Gerberich, J. W. Hoehn, and S. K. Venkataraman, “Micromechanical toughness test applied to NiAl,” Mater. Sci. Eng. A, vol. A192/193, pp. 301–308, 1995.
[76] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of thin films: a critical review,” Surf. Coatings Technol., vol. 198, pp. 74–84, Aug. 2005.
[77] R. Consiglio, N. X. Randall, B. Bellaton, and J. Von Stebut, “The nano-scratch tester (NST) as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films,” Thin Solid Films, vol. 332, pp. 151–156, 1998.
[78] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughness measurement of ceramic thin films by two-step uniaxial tensile method,” Thin Solid Films, vol. 469–470, pp. 233–238, Dec. 2004.
[79] U. G. K. Wegst and M. F. Ashby, “The mechanical efficiency of natural materials,” Philos. Mag., vol. 84, no. 21, pp. 2167–2181, Jul. 2004.
[80] H. D. Espinosa, J. E. Rim, F. Barthelat, and M. J. Buehler, “Merger of structure and material in nacre and bone – Perspectives on de novo biomimetic materials,” Prog. Mater. Sci., vol. 54, pp. 1059–1100, Nov. 2009.
[81] G. Mayer, “New classes of tough composite materials—Lessons from natural rigid biological systems,” Mater. Sci. Eng. C, vol. 26, pp. 1261–1268, Sep. 2006.
[82] A. A. Voevodin, M. A. Capano, S. J. . Laube, M. S. Donley, and J. S. Zabinski, “Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films,” Thin Solid Films, vol. 298, pp. 107–115, Apr. 1997.
[83] W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 01, pp. 3–20, Mar. 2011.
[84] M. Jirout and J. Musil, “Effect of addition of Cu into ZrOx film on its properties,” Surf. Coatings Technol., vol. 200, pp. 6792–6800, Aug. 2006.
[85] S. Zhang, D. Sun, Y. Fu, and H. Du, “Toughening of hard nanostructural thin films: a critical review,” Surf. Coatings Technol., vol. 198, pp. 2–8, Aug. 2005.
[86] S. Huang and X. Zhang, “Gradient residual stress induced elastic deformation of multilayer MEMS structures,” Sensors Actuators A Phys., vol. A134, pp. 177–185, Feb. 2007.
[87] P. Fratzl, H. S. Gupta, F. D. Fischer, and O. Kolednik, “Hindered Crack Propagation in Materials with Periodically Varying Young’s Modulus—Lessons from Biological Materials,” Adv. Mater., vol. 19, pp. 2657–2661, Sep. 2007.