研究生: |
潘瑞彧 Jui-yu Pan |
---|---|
論文名稱: |
高介電係數材料作為閘極介電層之次微米金氧半元件特性及其電漿充電效應研究 Characteristics and Plasma Charge Effects on Sub-micron MOSFET Devices with Gate Dielectrics Using High-k Material |
指導教授: |
張廖貴術
Kuei-Shu Chang-Liao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 氮化矽 、氧化鉭 、高介電係數 、電漿充電效應 |
外文關鍵詞: | Si3N4, Ta2O5, high-k, plasma charging effect |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們研究了兩種高介電係數材料作為閘極介電層元件的特性及其可靠性。
在Si3N4元件方面,我們利用兩階段快速熱氧化閘氮化矽層的方式製備電晶體元件來探討元件的初始特性及可靠度分析,並且藉由光罩設計來探討電漿蝕刻時對元件所引發傷害之影響。氮化矽層在經過850℃,15秒作為第一階段快速熱處理後,再以800℃,15秒作為第二階段熱氧化處理之元件,在電晶體之最大轉導退化、臨界電壓漂移量及電漿充電傷害皆可有效地改善。
在Ta2O5元件方面,我們嘗試不同的沈積前表面氮化處理溫度及沈積後退火處理(PDA)的方式製備電容元件來探討元件的初始特性及可靠性。我們發現沈積前表面氮化處理溫度為900℃,20秒搭配沈積後O2 Plasma退火處理的元件,其漏電流特性、崩潰電場可靠性、SILC的可靠性皆有所提升。
[1] C. Ho, “Gate Oxide Scaling Limits and Projection,” IEDM’96., pp. 319-322.
[2] C. C. Chen, C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin and M. S. Liang, “Temperature-Accelerated Dielectric Breakdown in Ultrathin Gate Oxides,” Appl. Phys. Lett., vol. 74, pp. 3708-3710, 1999.
[3] C. G. Parker, “Ultrathin Oxide-Nitride Gate Dielectric MOSFET’s,” IEEE Electron Device Lett., vol. 19, pp. 106-108, April 1998.
[4] The National Technology Roadmap for Semiconductors Technology Needs, 1997 edition, Semiconductor Industry Association.
[5] T. P. Ma, “Making Silicon Nitride a Viable Gate Dielectric,” IEEE Trans. Electron Devices, vol. 45, pp. 680-690, March 1998.
[6] Ching-Wu Wang, “A Study of Ta2O5 High Dielectric Capacitors Fabricated by RF Magnetron Sputtering Method,” IEDMS’98., AP-22, pp. 219-222.
[7] H. H. Tseng, “Application of JVD Nitride Gate Dielectric to a 0.35 Micro CMOS Process for Reduction of Gate Leakage Current and Boron Penetration,” IEDM’97., pp. 647-650.
[8] B. Y. Kim, H. F. Luan and D. L. Kwong, “Ultra Thin (<3nm) High Quality Nitride/Oxide Stack Gate Dielectrics Fabricated by In-Situ Rapid Thermal Processing,” IEDM’97., pp. 463-466.
[9] S. C. Song, H. F. Luan, Y. Y. Chen, M. Gardner, J. Fulford, M. Allen, “Ultra Thin (<20Å) CVD Si3N4 Gate Dielectric for Deep-Sub-Micron CMOS Devices,” IEDM’98., pp. 373-376.
[10] T. Yamamoto, T. Ogura, Y. Saito, K. Uwasawa, T. Tasumi, T. Mogami, “An Advanced 2.5 nm oxidized nitride gate dielectric for highly reliable 0.25μm MOSFET’s,” VLSI Tech. Symp. Dig., pp. 45-46, 1997.
[11] L. K. Han, J. Kim, G. W. Yoon, J. Yan, and D.L. Kwong, “High Quality Oxynitride Gate Dielectrics Prepared by Reoxidation of NH3-Nitrided SiO2 in N2O Treatment,” Electron. Lett., vol. 31, p.1196-1198, 1995.
[12] T. M. Pan, T. F. Lei, T. S. Chao, “Robust Ultrathin Oxynitride Dielectrics by NH3 Nitridation and N2O RTA Treatment,” IEEE Electron Devices Lett., vol. 2, pp. 378-380, 2000.
[13] M. Matsui et al, “Amorphous Silicon Thin-Film Transistors Employing Photo Processed Tantalum Oxide Films as Gate Insulators,” JJAP., vol. 29, pp. 62, 1990.
[14] J. L. Autra et al, “Fabrication and Characterization of Si-MOSFET’s with PECVD Amorphous Ta2O5 Gate Insulator,” IEEE Electron Devices Lett., vol. 18, pp.447, 1997.
[15] S. O. Kim et al, “Fabrication of n-Metal-Oxide Semiconductor Field Effect Transistor with Ta2O5 Gate Oxide Prepared by Plasma Enhanced Metal-organic Chemical Vapor Deposition,” J. Vac. Sci. Technol. B, vol. 12, No. 5, pp. 3006, 1994.
[16] I. Asona et al, “1.5 nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High density DRAMs,” IEDM’98., pp. 755-758.
[17] Yi-Lee Huang, Study of Ta2O5 as Ultra-thin Stacked Gate Material and Leakage Current Reduction by Plasma Annealing, 1997.
[18] H. F. Luan, B. Z. Wu, L. G. Kang, B. Y. Kim, R. Vrtis, D. Robert, and D. L. Kwong, “Ultra Thin High Quality Ta2O5 Gate Dielectric Prepared by In-situ Rapid Thermal Processing,” IEDM’98, pp. 609-612.
[19] H. F. Luan, S. J. Lee, C. H. Lee, S. C. Song, Y. L. Mao, Y. Senzaki, D. Roberts, and D. L. Kwong, ”High Quality Ta2O5 Gate Dielectrics with Tox,eq<10Å,” IEDM’99, pp. 141-144.
[20] K. W. Kwon, C. S. Kang, S. O. Park, H. O. Kang, and S. T. Ahn, “Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM,” IEEE Trans. Electron Device, vol. 43, No. 6, pp. 919-923, 1996.
[21] S. C. Sun and T. F. Chen, “Leakage Current Reduction in Chemical- Vapor Deposition Ta2O5 Films by Rapid Thermal Annealing in N2O,” IEEE Electron Device Lett., vol. 17, No. 7, pp. 355-357, 1996.
[22] S. C. Sun and T. F. Chen, “A New Post-Deposition Annealing Method Using Furnace N2O for Reduction of Leakage Current of CVD Ta2O5 Storage Capacitors,” IEDM’96, pp.687-690.
[23] Yuichi Matsui, Kazuyoshi Torii, Misuzu Hirayama, Yoshihisa Fujisaki, Shimpei Iijima, and Yuzuru Ohji, “Reduction of Current Leakage in Chemical-Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing,” IEEE Electron Devices Lett., vol. 17, No. 9, pp. 431-433, 1996.
[24] H. Shinriki and M. Nakata, “UV-O3 and Dry-O2: Two Step Anealed Chemical Vapor Deposited Ta2O5 Films for Storage Dielectric of 64-Mb DRAM’s,” IEEE Trans. Electron Devices, vol. 38, No. 3, pp. 455-462, 1991.
[25] Feng Wensiu, Chen Pusheng, Huang Shiping, “Study on Oxygen Distribution and Oxided Mechanism for Ultrathin Oxided Si3N4 by Rapid Thermal Oxdation,” IEEE, 1996.
[26] E. C. Carr, K. A. Ellis, and R. A. Buhrman, “N Depth Profile in Thin SiO2 Grown or Processed in N2O: The Role of Atomic Oxygen,” Appl. Phys. Lett., vol. 66, pp. 1492-1494, 1995.
[27] W. Ting, G. Q. Lo, J. Ahn, T. Y. Chu, and D. L. Kwong, “MOS Characteristics of Ultrathin SiO2 Prepared by Oxidizing Si in N2O,” IEEE Electron Device Lett., vol. 12, pp. 416-418, 1991.
[28] G. W. Yoon, A. B. Joshi, J. Kim, and D. L. Kwong, “MOS Characteristics of NH3-Nitrided N2O-Grown Oxides,” IEEE Electron Device Lett., vol. 14, pp. 179-181, 1993.
[29] Y. Shi, X. Wang, and T. P. Ma, “Electrical Properties of High-Quality Ultrathin Nitride/Oxide Stack Dielectrics,” IEEE Transactions on Electron Devices, Vol. 46, No. 2, 1999.
[30] S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films,” J. Appl. Phys., 1967.
[31] E. Suzuki and Y. Hayashi, “Carrier Conduction and Trapping in Metal-Nitride-Oxide Semiconductor Structure,” J. Appl. Phys., 1982.
[32] D. V. Tsu, G. Lucovsky, and M. J. Mantini, “Local Atomic Structure in Thin Films of Silicon Nitride and Silicon Dioxide Produced by Remote Plasma Enhanced Chemical-Vapor Deposition,” Phys. Rev., 1986.
[33] K. Kobayashi, A. Teramoto, and M. Hirayama, “Charge Transport in Ultrathin Silicon Nitrides,” J. Electrochem. Soc., 1995.
[34] Bone Fung Wu, Electric Property Improvement of Sub-micro MOSFET by Two-Step Nitirded Oxide and α-Si Gate Electrode, 2000
[35] Chao Sung Lai, Tien Sheng Chao, Tan Fu Lei, Chung Len Lee, Tiao Yuan Huang, Chun Yen Chang, “Improvement of Reliability of Metal-Oxide Semiconductor Field-Effect Transistors with N2O Nitrided Gate Oxide and N2O Polysilicon Gate Reoxidation”, JJAP, Vol. 37, p. 5507, 1998.
[36] C. G. Parker, G. Lucovsky, J. R. Hauser, “Ultrathin Oxide-Nitride Dielectric MOSFET’s”, IEEE Electron Device Lett., Vol. 19, No. 4, p. 106, 1998.
[37] C. Chaneliere , J. L. Autran, R. A. B. Devine, “Conduction Mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 Stacked Structures on Si”, J. Appl. Phys., Vol. 86, July, 1999.
[38] S. C. Song, H. F. Luan, C. H. Lee, A. Y. Mao, S. J. Lee, J. Gelpey, S. Marcus, and D. L. Kwong, “Ultra Thin High Quality Stack Nitride/Oxide Gate Dielectrics Prepared by In-situ Rapid Thermal N2O Oxidation of NH3-nitrided Si”, VLSI Tech. Symp. Dig., pp. 137-138, 1999.
[39] W. J. Lee, H. G. Kim, and S. G. Yoon,“Microstructure Dependence of Electrical Properties of (Ba0.5Sr0.5)TiO3 Thin Film Deposited on Pt/SiO2/Si”, J.Appl. Phys. 80(10), pp. 5891-5894,15 November 1996.
[40] S. Fang, S. Murakawa, and J. P. McVittie, IEDM, p.61, 1992.
[41] J. P. McVittie, Plasma Process-Induced Damage, p.7, 1996.
[42] K. Hashimoto, Jpn. J. Appl. Phys., vol. 32, p.6109, 1993.
[43] K. Hashimoto, Jpn. J. Appl. Phys., vol. 33, p.6013, 1994.
[44] K. P. Cheung et. al., IEDM, p.437, 1997.
[45] K. Lai et. al., IEDM, p.319, 1995.
[46] D. Bollinger et. al., Solid State Tech., p.111, 1984.
[47] D. Bollinger et. al., Solid State Tech., p.167, 1984.
[48] Shawming Ma et al,IEEE Electron Device Letters, p420, 1997.
[49] K.P.Cheung, IEEE Electron Device Letters, p460, 1994.
[50] P.Z.Cheung, J.C.Li, C.C.Yeh, K.S.Chang-Liao, 4th International Symp .on Plasma Process Induced Damage, p100, 1999.
[51] H.J.Tao et al, 3th International Symp. on Plasma Process Induced Damage, p60, 1998.
[52] K.Hashimoto et al, Appl.Phys.Lett, p1507, 1993.
[53] Koichi Hashimoto et al, Jpn.J.Appl.Phys, p6013, 1994.
[54] H. C. Shin et. al., Semicond. Sci. Technol., vol. 11, p.463, 1996.
[55] K. P. Cheung et. al., J. Appl. Phys., vol. 75, p.4415, 1994.
[56] T. Watanabe, Y. Yoshida, Solid State Tech., p.213 ,1984.
[57] J.P. McVittie, “Process Charging in ULSI: Mechanisms, Impact and Solutions” IEDM , p.433 ,1997.
[58] H.Shin, “Thin Gate Oxide Damage Due to Plasma Processes” Semicon. Sci. Technol.11, p.463 ,1996.
[59] T.Watanable, Solid State Technology, 27, p263, 1984.
[60] Y.Kawamoto, Dry Process Symposium, Oct, p132, 1985.
[61] H.Shin, IEEE EDL, 14, p88, 1993.
[62] H.Shin, Solid State Tech, p29, 1993.
[63] C.T.Gabriel, J.Vac.Sci.Tech.B, 9, p370, 1991.
[64] S. Fang et al, “Thin Oxide Damage From Gate Charging During Plasma Processing”, IEEE Electron Device Lette, Vol.13, No.5, p.288, 1992.