研究生: |
張 瑄 Chang, Hsuan |
---|---|
論文名稱: |
使用空頻區塊編碼之基於離散哈特利轉換的濾波器組多載波系統 A DHT-Based Filter Bank Multicarrier System Using Space-Frequency Block Coding |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
馮世邁
Phoong, See-May 歐陽源 Ou, Yang-Yuan 古聖如 Ku, Sheng-Ju |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 空頻區塊編碼 、離散哈特利轉換 、多重輸入多重輸出 、濾波器組多載波系統 、最小均方誤差 、位元錯誤率 |
外文關鍵詞: | SFBC, DHT, MIMO, FBMC, MMSE, BER |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們在多重輸入多重輸出 (multiple input multiple output ; MIMO)情形下研究一種基於離散哈特利轉換 (discrete Hartley transform;DHT) 的替代性濾波器組多載波 (FBMC) 系統,而不是基於離散傅立葉轉換 (discrete Fourier transform;DFT) 。為了提高資料偵測性能,在基於DHT的MIMO FBMC系統,我們結合了空頻區塊碼 (SFBC),因為可以達到空間和頻率分集增益,我們的傳送資料會先經由convolution 編碼器編碼後,每個傳送端則使用適當的 SFBC編碼器。而對於接收端的數據偵測,我們除了採用SFBC解碼器之外,我們還使用了full-tap MMSE的等化方式。電腦模擬結果顯示我們所提出的SFBC DHT-MIMO FBMC系統可以達到比原有的 DFT-MIMO FBMC系統有較好的位元錯誤率,然而前者所使用的聯合資料偵測需要比較高的運算量,以開發DHT系統中的多樣性增益。
In this thesis, we study an alternative filter bank multi-carrier (FBMC) system based on the discrete Hartley transform (DHT), in the context of multiple input multiple output (MIMO), not based on the discrete Fourier transform (DFT). To improve the data detection performance in the DHT-based MIMO FBMC system, we combine it with the space-frequency block code (SFBC), which increases the space and frequency diversity. Our transmission data is first encoded by the convolution encoder, and each transmission end uses the appropriate SFBC encoder. For data detection at the receiver, in addition to the SFBC decoder, we also use the full-tap minimum mean square error (MMSE) equalization method. Computer simulation results show that our proposed SFBC DHT-MIMO FBMC system can achieve a better bit error rate (BER) than the SFBC DFT-MIMO FBMC system; however, the proposed system also requires higher computational complexity for joint data detection at the receiver to exploit the diversity gain.
[1]R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Norwood, MA: Artech House, 2000.
[2]B. F. Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
[3]A. Bedoui and M. Et-tolba, “A comparative analysis of filter bank multicarrier (FBMC) as 5G multiplexing technique,” in Proc. Int. Conf. Wireless Netw. and Mobile Commun. (WINCOM), Rabat, Morocco, Nov. 2017, pp. 1–7.
[4]P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice-Hall, 1993.
[5]B. D. Tensubam, N. L. Chanu, and S. Singh, “Comparative analysis of FBMC and OFDM multicarrier techniques for wireless communication networks,” Int. J. Comput. Appl., vol. 100, no. 19, pp. 27–31, Aug. 2014.
[6]Z. E. Ankarali, B. Peköz, and H. Arslan, “Flexible radio access beyond 5G: A future projection on waveform, numerology, and frame design principles,” IEEE Access, vol. 5, pp. 18295–18309, Mar. 2017.
[7]K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80, Sep. 2018.
[8]A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http//www.ict-phydyas.org/.
[9]M. Renfors, T. Ihalainen, and T. H. Stitz, “A block-Alamouti scheme for filter bank based multicarrier transmission,” in Proc. Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1031–1037.
[10]R. Zakaria, D. Le Ruyet, and M. Bellanger, “Maximum likelihood detection in spatial multiplexing with FBMC,” in Proc. Eur. Wireless Conf., Lucca, Italy, Apr. 2010, pp. 1038–1041.
[11]Y. H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, and J.-Y. Seol, “A new waveform enabling enhanced QAM-FBMC systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Stockholm, Sweden, Jun. 2015, pp. 116–120.
[12]H. Nam, M. Choi, S. Han, C. Kim, S. Choi, and D. Hong, “A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5998–6009, Sep. 2016.
[13]H.-S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
[14]C.-L. Wang, H.-S. Pan, and C.-T. Tuan, “Filter bank multicarrier transmission based on the discrete Hartley transform,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Seoul, South Korea, Apr. 2020.
[15]J. Mao, C.-L. Wang, L. Zhang, C. He, P. Xiao, and K. Nikitopoulos, “A DHT-based multicarrier modulation system with pairwise ML detection,” in Proc. IEEE Int. Symp. Pers., Indoor Mobile, Radio Commun. (PIMRC), Montreal, Canada, Oct. 2017.
[16]K. F. Lee and D. B. Williams, “A space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE Global Telecom. Conf. (GLOBECOM), San Francisco, California, USA, Nov./Dec. 2000, pp. 1473–1477.
[17]A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperative diversity—Part I: System description,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.
[18]A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperative diversity—Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, pp. 1939–1948, Nov. 2003.
[19]R. Zakaria and D. L. Ruyet, “On interference cancellation in Alamouti coding scheme for filter bank based multicarrier systems,” in Proc. IEEE Int. Symp. Wireless Commum. Syst. (ISWCS), Aug. 2013.
[20]P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[21]Z. Ho, K. Kim, C. Kim, Y. H. Yun, Y. H. Cho, and J. Y. Seol, “A QAM-FBMC space-time block code system with linear equalizers,” in Proc. IEEE Globecom Workshops, San Diego, USA, Dec. 2015, pp. 1–5.
[22]C.-H. Wang, “Data detection for a DHT-based MIMO filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
[23]C.-L. Wang and K. -Y. Chu and, “An improved transceiver design for two-relay SFBC-OFDM cooperative relay systems,” in Proc. IEEE 83rd Veh. Technol. Conf. (VTC- Spring), Nanjing, China, May 2016, pp. 1–5.
[24]C.-L. Wang, J.-L. Chen and S. -S. Wang, “A partial PIC based receiver design for SFBC-OFDM cooperative relay systems,” in Proc. IEEE 81st Veh. Technol. Conf. (VTC Spring), Glasgow, UK, May 2015, pp. 1–5.
[25]K.-C. Yang, “Time synchronization and CFO estimation for a DHT-based filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.
[26]S. Sesia, I. Toufik, and M. Baker, LTE-The UMTS Long Term Evolution: From Theory to Practice, 2nd ed. UK: John Wiley & Sons, 2011.