研究生: |
呂佳蓮 Lu, Chia Lien |
---|---|
論文名稱: |
具玻璃纖維與聚四氟乙烯複合多孔隔膜之高效能磷酸燃料電池 High Performance Phosphoric Acid Fuel cell with Glass Microfiber and Polytetrafluoroethylene Composite Porous Membrane |
指導教授: |
曾繁根
Tseng, Fan Gang |
口試委員: |
薛康琳
hsueh, kang lin 黃鈺軫 huang, yu chen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 磷酸燃料電池 、多孔隔膜 、玻璃纖維 、聚四氟乙烯 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出使用多孔性的玻璃纖維與聚四氟乙烯薄膜製成的複合膜,應用於磷酸燃料電池中做為質子傳導膜。此複合膜藉由玻璃纖維浸泡86%磷酸水溶液以具備質子傳導能力,並藉由聚四氟乙烯薄膜形成防止磷酸洩漏的保護層。
玻璃纖維與聚四氟乙烯薄膜兩者於磷酸燃料電池操作溫度150~220℃範圍皆具熱穩定性,並對磷酸具化學穩定性,成本亦相當便宜。由顯微結構分析與壓汞測孔儀可得知,玻璃纖維是具有微米等級孔洞分佈的基材,與昔日孰知應用於磷酸燃料電池之碳化矽多孔隔膜具有相似的結構,並擁有比碳化矽更高的孔隙率(93%)可含浸磷酸;聚四氟乙烯薄膜則為具奈米等級孔洞的基材,可藉親水處理讓磷酸溶液得以滲入其奈米孔洞,兩種薄膜結合可兼具富含磷酸電解質與防止磷酸洩漏之功能,其於150℃之質子傳導能力可達0.71 S/cm。
於磷酸燃料電池之單電池測試時,陰陽極使用碳布做為擴散層,觸媒層使用鉑顆粒承載於XC72碳黑上,使用噴塗法將觸媒漿料均勻塗佈於擴散層上以完成電極之製作。使用冷壓方式組成膜電極組(Membrane Electrode Assembly, MEA)後,組成一單電池進行性能的量測與探討。其最好的性能發生於使用聚四氟乙烯黏著劑比例35%,黏著鉑觸媒與碳顆粒的電極,於150℃操作溫度下,提供純氧與氫氣,其電流密度為900mA/cm2時有最高功率密度296 mW/cm2。
The research proposes a composite membrane using glass microfiber and polytetrafluoroethylene(PTFE) thin film applied in phosphoric acid fuel cell as proton exchange membrane. The glass microfiber is soaked in 86% phosphoric acid to possess proton conductivity, and the PTFE thin film outside the glass microfiber prevents the leakage of phosphoric acid.
The glass microfiber and PTFE thin film both have thermal and chemical stability at phosphoric acid fuel cell’s working temperature 150~220℃.Otherwise, the two membrane are also very cheap. From the analysis of micron structure and mercury porosimeter, glass microfiber membrane has many micron pores that is similar to previous phosphoric acid porous membrane SiC’s structure. However, our glass microfiber has higher porosity(93%) than SiC matrix that can let glass microfiber possess more phosphoric acid contents. PTFE thin film has many nano pores. We can let PTFE nano pores fulfilled with phosphoric acid by hydrophilic treatment. The combination of two membranes possesses rich phosphoric acid electrolyte content and prevents leakage of phosphoric acid, and the composite membrane’s proton conductivity achieve 0.71 S/cm at 150℃.
When phosphoric acid fuel cell tests, anode and cathode use carbon cloth as diffusion layer. The catalyst layer is Pt/C. After cold pressing, we measure the MEA’s effects and study the phenomenon. A best fuel cell performance using the composite membrane with Pt/C and 35%PTFE binder exhibits a peak power density of 296mW/cm2 at 150℃ with H2 and pure O2.
[1] Q. Tang, K. Huang, G. Qian, and B. C. Benicewicz, "Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane," Journal of Power Sources, vol. 229, pp. 36-41, 5/1/ 2013.
[2] 衣寶廉, "燃料電池-原理與應用," 五南書局, 2007.
[3] 馬承九, "燃料電池札記," 三民書局, 2008.
[4] 黃鎮江, "燃料電池," 全華科技圖書股份有限公司, 2003.
[5] B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Journal of Membrane Science, vol. 259, pp. 10-26, 8/15/ 2005.
[6] P. Choi, N. H. Jalani, and R. Datta, "Thermodynamics and Proton Transport in Nafion," Journal of The Electrochemical Society, vol. 152, p. E123, 2005.
[7] R. Lan, X. Xu, S. Tao, and J. T. S. Irvine, "A fuel cell operating between room temperature and 250°C based on a new phosphoric acid based composite electrolyte," Journal of Power Sources, vol. 195, pp. 6983-6987, 2010.
[8] N. Sammes, R. Bove, and K. Stahl, "Phosphoric acid fuel cells: Fundamentals and applications," Current Opinion in Solid State and Materials Science, vol. 8, pp. 372-378, 2004.
[9] A. K. S. M. Neergat, "A high-performance phosphoric acid fuel cell," Journal of Power Sources, vol. 102, pp. 317–321, 2001.
[10] R.-H. S. S.Dheenadayalan, Dong-Ryul Shin , "Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method," Journal of Power Sources, vol. 107, pp. 98-102, 2002.
[11] B. D. Y. Ki Hyun Yoon∗, "Preparation and characterization of matrix retaining electrolyte for a phosphoric acid fuel cell by non-volatile solvent, NMP.pdf>," Journal of Power Sources, vol. 124, pp. 47–51, 2003.
[12] S. Dheenadayalan, R.-H. Song, and D.-R. Shin, "Characterization and performance analysis of silicon carbide electrolyte matrix of phosphoric acid fuel cell prepared by ball-milling method," Journal of Power Sources, vol. 107, pp. 98-102, 2002.
[13] J. A. Asensio and P. Gómez-Romero, "Recent Developments on Proton Conduc-ting Poly(2,5-benzimidazole) (ABPBI) Membranes for High Temperature Poly-mer Electrolyte Membrane Fuel Cells," Fuel Cells, vol. 5, pp. 336-343, 2005.
[14] Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of the Electrochemical Society, vol. 151, pp. A8-A16, Jan 2004.
[15] P. Staiti, M. Minutoli, and S. Hocevar, "Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application," Journal of Power Sources, vol. 90, pp. 231-235, 10/1/ 2000.
[16] S. Wang, F. Dong, and Z. Li, "Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability," Journal of Materials Science, vol. 47, pp. 4743-4749, 2012/06/01 2012.
[17] F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount," RSC Advances, vol. 2, pp. 1547-1556, 2012.
[18] L. C. Jheng, C. Y. Huang, and S. L. C. Hsu, "Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 38, pp. 1524-1534, Feb 6 2013.
[19] R. Zhang, Z. Shi, Y. Liu, and J. Yin, "Synthesis and characterization of polybenzimidazole–nanodiamond hybrids via in situ polymerization method," Journal of Applied Polymer Science, vol. 125, pp. 3191-3199, 2012.
[20] C. Shen, Z. Guo, C. Chen, and S. Gao, "Preparation of inorganic–organic hybrid proton exchange membrane with chemically bound hydroxyethane diphosphonic acid," Journal of Applied Polymer Science, vol. 126, pp. 954-959, 2012.
[21] K. Kargupta, S. Saha, D. Banerjee, M. Seal, and S. Ganguly, "Performance enhancement of phosphoric acid fuel cell by using phosphosilicate gel based electrolyte," Journal of Fuel Chemistry and Technology, vol. 40, pp. 707-713, 6// 2012.
[22] Q. Tang, H. Cai, S. Yuan, X. Wang, and W. Yuan, "Enhanced proton conductivity from phosphoric acid-imbibed crosslinked 3D polyacrylamide frameworks for high-temperature proton exchange membranes," International Journal of Hydrogen Energy, vol. 38, pp. 1016-1026, 1/24/ 2013.
[23] Q. Tang, S. Yuan, and H. Cai, "High-temperature proton exchange membranes from microporous polyacrylamide caged phosphoric acid," Journal of Materials Chemistry A, vol. 1, pp. 630-636, 2013.
[24] A. S. Gruzd, E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, I. B. Meshkov, M. O. Gallyamov, et al., "Novel polyolefin/silicon dioxide/H3PO4 composite membranes with spatially heterogeneous structure for phosphoric acid fuel cell," International Journal of Hydrogen Energy, vol. 38, pp. 4132-4143, 2013.
[25] S. Banerjee, "Fuel cell incorporating a reinforced membrane," US 5795668 A, 1998.
[26] J. M. T. NengYou Jia, Yang Song, "Multiple Membrane Layers in a Fuel Cell Membrane-Electrode Assembly," Patent US 20120141910 A1, 2012.
[27] S. N. Tomohiro Ono, Masahiro Kawasaki, Takeshi Nakano, Hiroyuki Ogi, "Electrolyte multilayer membrane for solid polymer fuel cell, membrane-electrode assembly, and fuel cell," Patent EP 1978584 A1, 2008.
[28] R. DiPasquale, "Fuel cell matrix having curling compensation," Patent US 4352865 A, 1982.
[29] 洪太峰, "燃料電池用含PTFE氣體擴散層之製備與性質研究," 中原大學, vol. 化學研究所, 2004.
[30] K. Mitsuda, H. Shiota, H. Kimura, and T. Murahashi, "Influence of the temperature of heat treatment on phosphoric acid fuel cell cathodes," Journal of Materials Science, vol. 26, pp. 6436-6442, 1991/12/01 1991.
[31] H. S. KENRO MITSUDA, HIROSHI KIMURA, TOSHIAKI and MURAHASHI, "Influence of the temperature of heat treatment
on phosphoric acid fuel cell cathodes," JOURNAL OF MATERIALS SCIENCE, vol. 26, pp. 6436-6442, 1991.
[32] C. Lim and C. Y. Wang, "Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell," Electrochimica Acta, vol. 49, pp. 4149-4156, 2004.
[33] B.-W. Choi, S.-J. Chung, and D.-R. Shin, "Microstructure of PTFE and acid absorption behavior in PTFE-bonded carbon electrodes," International Journal of Hydrogen Energy, vol. 21, pp. 541-546, 7// 1996.