研究生: |
黃宥寬 |
---|---|
論文名稱: |
建立缺氧區調控介白素三號之系統-以觀察巨噬細胞於腫瘤缺氧環境之行為 Establishment of Hypoxia-regulated Interleukin-3 Expression System for Studying the Role of Macrophage in Hypoxia |
指導教授: | 江啟勳 |
口試委員: |
洪志宏
張建文 江啟勳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 巨噬細胞 、介白素 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤缺氧區域對於化學治療與放射治療都具有一定程度的抵抗性;無論是藥物的傳遞與效果不佳,或是放射線造成的傷害無法被固定,使腫瘤細胞無法完全清除。因此提高藥物對於缺氧區的傳遞是目前治療上迫切需解決的問題。本研究將介白素三號(Interleukin-3, IL3)基因插入帶有六重複Hypoxia response element(HRE)序列的載體,再利用微脂體轉染入小鼠攝護腺癌腫瘤細胞(TRAMP-C1)。使用藥物Deferoxamine或缺氧無菌培養箱(1%O2、5%CO2、94%N2)之培養條件,證明TRAMP-HRE-IL3釋放IL-3之能力有明顯的提升。利用pre-IR照射模組,比較TRAMP、TRAMP-IL3、TRAMP-HRE-IL3於動物體內生長及探討腫瘤微環境的改變。結果顯示受IL-3影響,腫瘤微環境中巨噬細胞有更多聚集的現象,而TRAMP-HRE-IL3由於在缺氧區有局部性高濃度的IL-3表現,因此相對於其於兩細胞株之Control之缺氧區約有1.7倍多之巨噬細胞浸潤,而細胞移動實驗更加確認巨噬細胞移動增加之能力與IL-3有直接相關。此外,由於IL-3所導致的脾臟腫大之副作用也因IL-3釋放受HRE調控而大幅減少。因此我們改善了原本利用IL-3於腫瘤基因治療之副作用,並建立了可在缺氧區提升巨噬細胞聚集程度之腫瘤微環境,欲配合以單核球-巨噬細胞作為藥物載體之系統,與放射線治療做為結合,期望能得到更佳的腫瘤治療效果。
Tumor hypoxic regions are more resistant to chemo- and radiation- therapy due to the ineficiency of drug delivery or unfixable DNA damages resulted from low concentration of oxygen. Therefore, therapeutic strategy improvements are desperately needed to treat these tumor microenvironments.
Murine prostate cancer, TRAMP-C1, was used as a research model. A vector of six-tandem repeats of bidirectional enhancers, hypoxia response element (HRE), inserted with murine interleukin-3 (mIL-3) as a working gene at one arm was used to create a new cell line named TRAMP-C1-HRE-IL3, in order to regulate the secretion of IL-3 within hypoxic regions for monitoring changes in the tumor micrenvironments and macrophage aggregation.ELISA and RT-PCR results showed that the expression of IL-3 was induced after Deferoxamine (DFX) treatment or hypoxia-mimic environment incubation (1% O2、5% CO2、94% N2).
The tumor growth and microenvironment changes in three different cancer cell lines, TRAMP-C1, TRAMP-C1-IL3 and TRAMP-C1-HRE-IL3, on C57BL/6J mice were compared. The data showed that TRAMP-C1- HRE-IL3 tumors can enhance the migration of macrophages toward hypoxia regions to as high as 1.7 folds comparing with the other two types of control tumors, and have the similar aggregation patterns in the pre-IR tumor model.
Further experiments proved that this migration enhancement is directly related to IL-3 secretion from cancer cells. Additionally, spleen enlargement, a side effect from original IL-3 gene therapy, is greatly reduced by using TRAMP-C1-HRE-IL3.
To sum up, the side effects of using IL-3 were lowered by regulating its secretion with HRE, and at the same time, a macrophage migration and aggregation favorable environment was created within the tumor hypoxic regions. In combination with monocyte-macrophage drug delivery system and radiation-therapy, it is hoped that it will resulted as a better anti-cancer strategy.
01. 行政院衛生署癌症登記97、99年度報告.
02. Cao Y, DePinho RA, Ernst M, Vousden K. Cancer research: past, present and future. Nat Rev Cancer 2011;11(10): 749-54.
03. Witz IP, Levy-Nissenbaum O. The tumor microenvironment in the post-PAGET era. Cancer Lett 2006;242(1): 1-10.
04. Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol 2007;213(2): 391-402.
05. Zalatnai A. Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med 2006;6(6): 685-93.
06. Dvorak HF, Weaver VM, Tlsty TD, Bergers G. Tumor microenvironment and progression. J Surg Oncol 2011;103(6): 468-74.
07. Hede K. Environmental protection: studies highlight importance of tumor microenvironment. J Natl Cancer Inst 2004;96(15): 1120-1.
08. Sung SY, Chung LW. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 2002;70(9-10): 506-21.
09. Baluk P, Yao LC, Feng J, et al. TNF-alpha drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest 2009;119(10): 2954-64.
10. Nussenbaum F, Herman IM. Tumor angiogenesis: insights and innovations. J Oncol 2010;2010: 132641.
11. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 1999;59(7): 1592-8.
12. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407(6801): 249-57.
13. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6(4): 389-95.
14. di Tomaso E, Snuderl M, Kamoun WS, et al. Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer Res 2011;71(1): 19-28.
15. Chekenya M, Pilkington GJ. NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol 2002;31(6-7): 507-21.
16. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003;314(1): 15-23.
17. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998;58(7): 1408-16.
18. Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1): 38-47.
19. Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003;94(12): 1021-8.
20. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10): 721-32.
21. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70(5): 1469-80.
22. Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 1988;242(4884): 1412-5.
23. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A 1991;88(13): 5680-4.
24. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93(4): 266-76.
25. Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999;59(18): 4525-8.
26. Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003;22(14): 2065-72.
27. Post DE, Van Meir EG. Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells. Gene Ther 2001;8(23): 1801-7.
28. Post DE, Shim H, Toussaint-Smith E, Van Meir EG. Cancer scene investigation: how a cold virus became a tumor killer. Future Oncol 2005;1(2): 247-58.
29. Post DE, Sandberg EM, Kyle MM, et al. Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. Cancer Res 2007;67(14): 6872-81.
30. Post DE, Khuri FR, Simons JW, Van Meir EG. Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003;14(10): 933-46.
31. Post DE, Fulci G, Chiocca EA, Van Meir EG. Replicative oncolytic herpes simplex viruses in combination cancer therapies. Curr Gene Ther 2004;4(1): 41-51.
32. Post DE, Devi NS, Li Z, et al. Cancer therapy with a replicating oncolytic adenovirus targeting the hypoxic microenvironment of tumors. Clin Cancer Res 2004;10(24): 8603-12.
33. Chu RL, Post DE, Khuri FR, Van Meir EG. Use of replicating oncolytic adenoviruses in combination therapy for cancer. Clin Cancer Res 2004;10(16): 5299-312.
34. Teicher BA, Lazo JS, Sartorelli AC. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 1981;41(1): 73-81.
35. Kato Y, Yashiro M, Fuyuhiro Y, et al. Effects of acute and chronic hypoxia on the radiosensitivity of gastric and esophageal cancer cells. Anticancer Res 2011;31(10): 3369-75.
36. Wouters BG, Brown JM. Cells at intermediate oxygen levels can be more important than the "hypoxic fraction" in determining tumor response to fractionated radiotherapy. Radiat Res 1997;147(5): 541-50.
37. Hewitt HB, Blake ER. The growth of transplanted murine tumours in pre-irradiated sites. Br J Cancer 1968;22(4): 808-24.
38. Jirtle R, Rankin JH, Clifton KH. Effect of x-irradiation of tumour bed on tumour blood flow and vascular response to drugs. Br J Cancer 1978;37(6): 1033-8.
39. Jirtle R, Clifton KH. Effect of preirradiation of the tumor bed on the relative vascular space of mouse gastric adenocarcinoma 328 and mammary adenocarcinoma CA755. Cancer Res 1973;33(4): 764-8.
40. Milas L, Ito H, Hunter N, Jones S, Peters LJ. Retardation of tumor growth in mice caused by radiation-induced injury of tumor bed stroma: dependency on tumor type. Cancer Res 1986;46(2): 723-7.
41. Chen FH, Chiang CS, Wang CC, et al. Vasculatures in tumors growing from preirradiated tissues: formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. Int J Radiat Oncol Biol Phys 2011;80(5): 1512-21.
42. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008;9(8): 628-38.
43. Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 2003;195(3): 346-55.
44. Tan BTG, Lee MMG, Ruan RS. Bone marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. Journal of Comparative Neurology 2008;509(2): 167-79.
45. De Palma M, Naldini L. Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochim Biophys Acta 2006;1766(1): 159-66.
46. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer 2006;42(6): 717-27.
47. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 2008;8(7): 533-44.
48. Kopfstein L, Christofori G. Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci 2006;63(4): 449-68.
49. Michal A. Rahat HBaNL. Molecular mechanisms regulating macrophage response to hypoxia. Front. Immun. 2:45. doi: 10.3389 2011.
50. Lin EY, Li JF, Gnatovskiy L, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006;66(23): 11238-46.
51. Chen FH, Chiang CS, Wang CC, et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res 2009;15(5): 1721-9.
52. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006;1: 119-50.
53. Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression. Seminars in Cancer Biology 2008;18(5): 349-55.
54. Hagemann T, Lawrence T, McNeish I, et al. "Re-educating" tumor-associated macrophages by targeting NF-kappa B. Journal of Experimental Medicine 2008;205(6): 1261-68.
55. Mancino A, Lawrence T. Nuclear factor-kappaB and tumor-associated macrophages. Clin Cancer Res 2010;16(3): 784-9.
56. Porta C, Subhra Kumar B, Larghi P, Rubino L, Mancino A, Sica A. Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 2007;604: 67-86.
57. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124(2): 263-6.
58. Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1 alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 2010;31(10): 1863-72.
59. Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 2007;117(4): 862-5.
60. Imtiyaz HZ, Williams EP, Hickey MM, et al. Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 2010;120(8): 2699-714.
61. Eder M, Geissler G, Ganser A. IL-3 in the clinic. Stem Cells 1997;15(5): 327-33.
62. Platzer E, Welte K, Gabrilove JL, et al. Biological activities of a human pluripotent hemopoietic colony stimulating factor on normal and leukemic cells. J Exp Med 1985;162(6): 1788-801.
63. Sieff CA, Niemeyer CM, Nathan DG, et al. Stimulation of human hematopoietic colony formation by recombinant gibbon multi-colony-stimulating factor or interleukin 3. J Clin Invest 1987;80(3): 818-23.
64. Valent P, Schmidt G, Besemer J, et al. Interleukin-3 Is a Differentiation Factor for Human Basophils. Blood 1989;73(7): 1763-69.
65. de Vries EG, van Gameren MM, Willemse PH. Recombinant human interleukin 3 in clinical oncology. Stem Cells 1993;11(2): 72-80.
66. Tepler I, Elias A, Kalish L, et al. Effect of recombinant human interleukin-3 on haematological recovery from chemotherapy-induced myelosuppression. Br J Haematol 1994;87(4): 678-86.
67. Wu YZ, Hong JH, Huang HH, Dougherty GJ, McBride WH, Chiang CS. Mechanisms mediating the effects of IL-3 gene expression on tumor growth. J Leukoc Biol 2000;68(6): 890-6.
68. McBride WH, Dougherty GD, Wallis AE, Economou JS, Chiang CS. Interleukin-3 in gene therapy of cancer. Folia Biol (Praha) 1994;40(1-2): 62-73.
69. Frendl G, Beller DI. Regulation of macrophage activation by IL-3. I. IL-3 functions as a macrophage-activating factor with unique properties, inducing Ia and lymphocyte function-associated antigen-1 but not cytotoxicity. J Immunol 1990;144(9): 3392-9.
70. Frendl G, Fenton MJ, Beller DI. Regulation of macrophage activation by IL-3. II. IL-3 and lipopolysaccharide act synergistically in the regulation of IL-1 expression. J Immunol 1990;144(9): 3400-10.
71. Yeh KY, McAdam AJ, Pulaski BA, Shastri N, Frelinger JG, Lord EM. IL-3 enhances both presentation of exogenous particulate antigen in association with class I major histocompatibility antigen and generation of primary tumor-specific cytolytic T lymphocytes. Journal of Immunology 1998;160(12): 5773-80.
72. Chiang CS, Hong JH, Wu YC, McBride WH, Dougherty GJ. Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther 2000;7(8): 1172-8.
73. Chiang CS, Syljuasen RG, Hong JH, Wallis A, Dougherty GJ, McBride WH. Effects of IL-3 gene expression on tumor response to irradiation in vitro and in vivo. Cancer Res 1997;57(18): 3899-903.
74. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005;175(1): 342-9.
75. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 2011;20(3): 300-14.
76. Fridlender ZG, Albelda SM. Tumor Associated Neutrophils: Friend or Foe? Carcinogenesis 2012.
77. Reid MD, Basturk O, Thirabanjasak D, et al. Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod Pathol 2011;24(12): 1612-9.
78. Piccard H, Muschel RJ, Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 2011.
79. Donahue RE, Seehra J, Metzger M, et al. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 1988;241(4874): 1820-3.
80. Pulaski BA, McAdam AJ, Hutter EK, Biggar S, Lord EM, Frelinger JG. Interleukin 3 enhances development of tumor-reactive cytotoxic cells by a CD4-dependent mechanism. Cancer Res 1993;53(9): 2112-7.
81. Turner L, Scotton C, Negus R, Balkwill F. Hypoxia inhibits macrophage migration. Eur J Immunol 1999;29(7): 2280-7.
82. Bosco MC, Puppo M, Blengio F, et al. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 2008;213(9-10): 733-49.
83. Rahat MA, Marom B, Bitterman H, Weiss-Cerem L, Kinarty A, Lahat N. Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association. Journal of Leukocyte Biology 2006;79(4): 706-18.
84. Roiniotis J, Dinh H, Masendycz P, et al. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 2009;182(12): 7974-81.
85. Murdoch C, Lewis CE. Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 2005;117(5): 701-8.
86. Negus RP, Turner L, Burke F, Balkwill FR. Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J Leukoc Biol 1998;63(6): 758-65.
87. Shimotakahara A, Kuebler JF, Vieten G, Kos M, Metzelder ML, Ure BM. Carbon dioxide directly suppresses spontaneous migration, chemotaxis, and free radical production of human neutrophils. Surg Endosc 2008;22(8): 1813-7.
88. Rahat MA, Marom B, Bitterman H, Weiss-Cerem L, Kinarty A, Lahat N. Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association. J Leukoc Biol 2006;79(4): 706-18.
89. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294(5545): 1337-40.
90. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292(5516): 468-72.
91. Berra E, Richard DE, Gothie E, Pouyssegur J. HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett 2001;491(1-2): 85-90.