簡易檢索 / 詳目顯示

研究生: 楊均偉
Yang, Chun-Wei
論文名稱: 以冷原子群產生雙光子之理論與實驗架設
Theory and experimental preparation of biphoton generation with atomic ensemble
指導教授: 褚志崧
Chuu, Chih-Sung
口試委員: 余怡德
Yu, Ite
劉怡維
Liu, Yi-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 雙光子製備自發四波混頻冷原子群電磁波誘發透明雙光子關聯函數量子資訊量子通訊
外文關鍵詞: biphoton generation, spontaneous four-wave mixing, cold atoms, electromagnetically induced transparency, two-photon correlation function, quantum information, quantum communication
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 產生具有非古典性質且頻率接近原子能階躍遷之糾纏光子對是實踐長距離量子通訊中重要的一環,本論文討論在電磁波誘發透明的條件下利用冷原子群(cold atoms)藉由大角度自發四波混頻(spontaneous four-wave mixing)的機制產生光子對實驗所需之理論基礎與實驗結果


    Generation of entangled photon pairs with non-classical properties is an important technique to realize long distance quantum communication. This thesis discusses the basic theoretical calculation and experimental results of generation of entangled photon pairs through right-angle spontaneous four-wave mixing in cold atoms based on electromagnetically induced transparency.

    第一章 緒論 1 第二章 理論計算 5 2.1 基本 5 2.1.1 密度矩陣(Density matrix) 5 2.1.2 電磁場與其傅立葉變換 6 2.1.3 Slowly varying envelope approximation (SVEA) 7 2.1.4 電極化向量(Electric polarization)與非線性效應 12 2.1.5 頻率混和 (Frequency mixing) 13 2.1.6 極化率(Electric susceptibility) 15 2.2 電磁波誘發透明 19 2.2.1 基本計算 20 2.2.2 光深度 (Optical depth, or OD) 23 2.2.3 都卜勒效應 (Doppler effect) 25 2.2.4 多通道EIT (Multi-channel EIT) 33 2.3 四波混頻 (four-wave mixing) 42 2.3.1 耦合波動方程式 (Coupled wave equation) 43 2.3.2 古典四波混頻(Classical four wave mixing) 46 2.3.3 自發四波混頻 (Spontaneous four wave mixing) 48 2.3.4 多通道自發四波混頻 (Multi-channel SFWM) 61 第三章 實驗架設 72 3.1 能階 72 3.2 Étalon 73 3.3 時序 76 3.4 單光子偵測器(Single photon counting module) 78 3.4.1 Photon detection efficiency 79 3.4.2 Dark count 80 3.4.3 Dead time 81 3.4.4 Gating 81 3.5 時間訊號分析器(multiple-time digitizer)P7887 83 3.5.1 時間解析度(Bin width)和範圍(Range) 85 3.5.2 Time preset 85 第四章 實驗結果 86 4.1 光深度(optical depth) 測量與結果 86 4.2 EIT測量與結果 90 4.3 自發四波混頻 96 4.3.1 Zeeman level 98 4.3.2 Beam profile 100 4.3.3 Frequency filtering 101 4.3.4 Laser intensity 102 4.3.5 Angle 102 4.3.6 比較 102 第五章 結論 104 附錄 105

    1. Bennett, C.H. and G. Brassard, QUANTUM CRYPTOGRAPHY: PUBLIC KEY DISTRIBUTION AND CON Tos5. 1984.
    2. Duan, L.M., et al., Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001. 414(6862): p. 413-418.
    3. Kuzmich, A., et al., Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature, 2003. 423(6941): p. 731-734.
    4. van der Wal, C.H., et al., Atomic memory for correlated photon states. Science, 2003. 301(5630): p. 196-200.
    5. Braje, D.A., et al., Frequency mixing using electromagnetically induced transparency in cold atoms. Phys Rev Lett, 2004. 93(18): p. 183601.
    6. Balic, V., et al., Generation of paired photons with controllable waveforms. Phys Rev Lett, 2005. 94(18): p. 183601.
    7. Yan, H., et al., Generation of narrow-band hyperentangled nondegenerate paired photons. Phys Rev Lett, 2011. 106(3): p. 033601.
    8. Fleischhauer, M., A. Imamoglu, and J.P. Marangos, Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics, 2005. 77(2): p. 633-673.
    9. Zhao, L., Y. Su, and S. Du, Narrowband biphoton generation in the group delay regime. Physical Review A, 2016. 93(3).
    10. Kolchin, P., Electromagnetically-induced-transparency-based paired photon generation. Physical Review A, 2007. 75(3).
    11. Kolchin, P., et al., Generation of narrow-bandwidth paired photons: use of a single driving laser. Phys Rev Lett, 2006. 97(11): p. 113602.

    QR CODE